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ABSTRACT

Quantum computing has shown its strong potential in solving cer-
tain important problems. Due to the intrinsic limitations of current
real quantum computers, quantum circuit simulation still plays an
important role in both research and development of quantum com-
puting. GPU-based quantum circuit simulation has been explored
due to GPU’s high computation capability. Despite previous efforts,
existing quantum circuit simulation systems usually rely on a single
method to improve poor data locality caused by complex quantum
entanglement. However, we observe that existing simulation meth-
ods show significantly different performance for different circuit
patterns. The optimal performance cannot be obtained only with
any single method.

To address these challenges, we propose HyQuas, a Hybrid par-
titioner based Quantum circuit Simulation system on GPU, which
can automatically select the suitable simulation method for dif-
ferent parts of a given quantum circuit according to its pattern.
Moreover, to make better support for HyQuas, we also propose two
highly optimized methods, OShareMem and TransMM , as optional
choices of HyQuas. We further propose a GPU-centric commu-
nication pipelining approach for effective distributed simulation.
Experimental results show that HyQuas can achieve up to 10.71×
speedup on a single GPU and 227× speedup on a GPU cluster over
state-of-the-art quantum circuit simulation systems.
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1 INTRODUCTION

The theory of quantum computing [37] has shown its strong poten-
tial in solving certain important problems that beyond the comput-
ing capability of classical computers, such as cryptography [13], fi-
nancial modeling [38], machine learning [14, 35, 40], and molecular
quantummechanics [9, 12]. Many quantum computers have been re-
leased in recent years [45], e.g., Intel’s 49-qubit quantum computer,
Google’s 53-qubit quantum computer Sycamore [8] and 72-qubit
quantum computer Bristlecone [4], IBM’s 53-qubit quantum com-
puter [3], and USTC’s 76-qubit quantum computer Jiuzhang [48].
However, quantum computers are still precious resources that can-
not be used widely and conveniently. Current quantum computers
also suffer from very large error rates and cannot be used to ver-
ify complex quantum algorithms. Additionally, a quantum state
is destroyed after its measurement, so not all intermediate data
can be collected on a real quantum system. Therefore, quantum
circuit simulation is necessary for advancing the theory of quantum
computing.

The most common way of building a quantum circuit simulation
system is representing a quantum state as a vector, and treating
quantum gates operating on a quantum circuit as small matrix-
vector multiplications. For example, applying a single-qubit quan-
tum gate to an 𝑛-qubit state can be regarded as 2𝑛−1 1×2×2 matrix
multiplications. As these small matrix multiplications have no data
dependency and can be parallelized, GPUs can provide much higher
throughput than CPUs, which has been explored by many previous
works [7, 10, 11, 21–26, 30, 31, 34, 36, 42, 47].

Building a high-performance quantum circuit simulator is chal-
lenging due to the complexity of quantum circuits, especially on
heterogeneous GPU platforms. A large number of small matrix
multiplications used for simulating various quantum gates lead to
poor data locality, which further causes high cache miss rate and
low computing resource utilization. To improve data locality, previ-
ous studies have explored the idea of grouping a set of quantum
gates applied to the circuit, so that multiple gates can be processed
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together. Among these works, two approaches are mostly used:
ShareMem [24] and BatchMV [42]. The former one caches states in
high-speed shared memory to reduce memory access latency, while
the latter one merges a group of gates to reduce total gate number.

However, our observation shows that above two approaches
represent different performances on different circuit patterns. The
ShareMemmethod has better performance on the sparse parts of cir-
cuits, while the BatchMV method works much better on the dense
parts. The performance differences can be up to 4.93× among these
two methods on seven typical quantum circuits we have evaluated.
Therefore, building an automatically adaptive quantum circuit simu-
lation system through combining the advantages of both ShareMem
and BatchMV is critical for high performance simulation, especially
with the rapid growth in complexity of quantum circuits. However,
it is not trivial to combine both approaches as the performance of
these two approaches are highly dependent on both upper quantum
circuits and underlying hardware architectures.

In this work, we propose a novel hybrid approach, called HyQuas,
which is a high-performance GPU-based quantum circuit simula-
tion system to address these challenges. The key of the Hybrid
approach is how to automatically and near-optimally partition a
given quantum circuit into different groups and select a suitable
method for each group. To achieve that, we design a circuit-aware
partition strategy and a high-accuracy performance model to guide
partitioning. Moreover, to further improve the performance, we
leverage several GPU hardware features and apply a set of com-
mon GPU optimization techniques in HyQuas:OShareMemmethod,
which deletes redundant computation, reduces data indexing over-
head, and uses a new layout to access the shared memory faster;
TransMM method, which converts a set of special matrix-vector
multiplications in quantum circuit simulation into general matrix
multiplications (GEMM) to easily take advantage of highly opti-
mized GEMM libraries and hardware-level GEMM compute units
like Tensor Cores. We further present a distributed implementation,
which can utilize high-throughput NVLink connections to enable
GPU directed communication while still preserving low communi-
cation traffic and further accelerate simulation via pipelining. To
the best of our knowledge, HyQuas is the most efficient GPU-based
quantum circuit simulation system so far.

Our contributions are summarized as follows:
• We propose the OShareMem method with new task-thread
mapping, faster indexing, and bank conflictmitigation, which
achieves up to 2.67× speedup over the existing ShareMem
methods.
• We propose a new TransMM method, which enables the
usage of highly optimized library cuBLAS and powerful
Tensor Cores, and leads to up to 8.43× speedup over the
existing BatchMV method.
• We propose a GPU-centric communication pipelining ap-
proach for distributed quantum circuit simulation, which
provides up to 227× speedup (129× on average) over the
state-of-the-art GPU-based distributed quantum circuit sim-
ulator [22] and achieves better scalability.
• We propose an adaptive quantum circuit simulation system
with a hybrid computing approach, called HyQuas1, which

1HyQuas is now available at https://github.com/thu-pacman/HyQuas.

can automatically analyze a given circuit, and select suitable
computing approaches for each sub-circuit. HyQuas can
achieve up to 10.71× speedup (2.73× on average) compared
with state-of-the-art quantum circuit simulation systems.

The paper is organized as follows: we give the basic concepts of
quantum computation in Section 2. Section 3 gives our motivation
and Section 4 introduces the overview of HyQuas. In Section 5,
we provide the detail of HyQuas’s design. In Section 6, we present
the optimization for distributed simulation. We evaluate HyQuas
in Section 7, discuss related works in Section 8, and conclude our
work in Section 9.

2 BASIC CONCEPT IN QUANTUM

COMPUTATION

Single-qubit system. In a classical computer, a bit is a determin-
istic state being “0” or “1”. However, in a quantum computer, a
quantum bit (qubit) is a non-deterministic state represented by two
complex numbers {𝛼0, 𝛼1} with:

|Ψ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ =
(
𝛼0
𝛼1

)
(1)

The probabilities of being in 0-state and 1-state are |𝛼0 |2 and
|𝛼1 |2, respectively, which satisfy |𝛼0 |2 + |𝛼1 |2 = 1. The complex
numbers 𝛼𝑖 are also called “amplitudes” in quantum computing.

An operation to the quantum bits is called a quantum “gate”.
A gate on one qubit can be represented by a unitary matrix 𝑈 of
dimension 2 × 2 . Applying a single-qubit gate 𝑈 on a single-qubit
state |Ψ⟩ results in an update of the probabilities 𝛼0 and 𝛼1:(

𝛼 ′0
𝛼 ′1

)
= 𝑈 |Ψ⟩ =

[
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

] (
𝛼0
𝛼1

)
=

(
𝑈0,0𝛼0 +𝑈0,1𝛼1
𝑈1,0𝛼0 +𝑈1,1𝛼1

)
(2)

For example, the NOT gate𝑋 =

[
0 1
1 0

]
flips the qubit and results

in a new state |Ψ⟩′ = 𝛼1 |0⟩ + 𝛼0 |1⟩, whose probability of being in
0-state and 1-state is swapped.

Two-qubit system. A two-qubit quantum system can be rep-
resented by four complex numbers showing the amplitudes of the
four basis:

|Ψ⟩ = 𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩ =
©­­­«
𝛼00
𝛼01
𝛼10
𝛼11

ª®®®¬ (3)

The 𝛼𝑖 also represents the probability distribution of the four states
and satisfies |𝛼00 |2 + |𝛼01 |2 + |𝛼10 |2 + |𝛼11 |2 = 1.

A gate on two qubits is a 4 × 4 unitary matrix. One important
type of two-qubit gates is the “controlled gate”, denoted as:

𝐶𝑈 =


1

1
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,0

 (4)

The two qubits of a “controlled” gates are called “control qubit” and
“target qubit”, respectively. The result of applying a “controlled gate”
is applying a single-bit gate to the target qubit when the control
qubit equals one.
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A single qubit gate can also be applied to a two-qubit system.
The 4 × 4 matrix representation of the gate is derived from the
tensor product of the 2× 2 matrix representation of the single qubit
gate and a 2 × 2 identity matrix. It is equivalent to multiplying U to
the groups with only one index differs. The gate on the first qubit
is applied to {𝛼00, 𝛼10} and {𝛼01, 𝛼11} respectively. The gate on the
second qubit is applied to {𝛼00, 𝛼01} and {𝛼01, 𝛼11} respectively. For
example, applying the NOT gate on the first qubit results in the
swap between {𝛼00, 𝛼10} and between {𝛼01, 𝛼11}:©­­­«

𝛼 ′00
𝛼 ′01
𝛼 ′10
𝛼 ′11

ª®®®¬ =


1

1
1

1


©­­­«
𝛼00
𝛼01
𝛼10
𝛼11

ª®®®¬ =

©­­­«
𝛼10
𝛼11
𝛼00
𝛼01

ª®®®¬ (5)

𝑁 -qubit system. An 𝑛-qubit system is represented by 2𝑛 com-
plex numbers {𝛼𝑖 }:

|Ψ⟩ = 𝛼0...00 |0...00⟩ + 𝛼0...01 |0...01⟩ + ... + 𝛼1...11 |1..11⟩ (6)
A gate on the 𝑛-qubit system is a 2𝑛 × 2𝑛 unitary matrix. How-

ever, the 2𝑛 × 2𝑛 matrix representations of single qubit gates and
controlled gates are very sparse and there is no need to construct
the matrix. Instead, these gates can be implemented by several small
matrix multiplications.

Applying a single-qubit gate to an𝑛-qubit system can be achieved
by 2𝑛−1 matrixmultiplication tasks. Each task updates two positions
with only the 𝑡𝑡ℎ index differs:(
𝑎′
𝑏0,...,𝑏𝑡−1, 0 ,𝑏𝑡+1,...,𝑏𝑛−1
𝑎′
𝑏0,...,𝑏𝑡−1, 1 ,𝑏𝑡+1,...,𝑏𝑛−1

)
=

[
𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

] (
𝑎𝑏0,...,𝑏𝑡−1, 0 ,𝑏𝑡+1,...,𝑏𝑛−1
𝑎𝑏0,...,𝑏𝑡−1, 1 ,𝑏𝑡+1,...,𝑏𝑛−1

)
(7)

And applying a two-qubit controlled gate on the 𝑛-qubit system
is equivalent to 2𝑛−2 matrix multiplication tasks. Each task updates
two positions with the index of the control qubit 𝑐 equals 1 and
only the target qubit 𝑡 differs:(

𝑎′
𝑏0,...,𝑏𝑐−1, 1 ,𝑏𝑐+1,...,𝑏𝑡−1, 0 ,𝑏𝑡+1,...,𝑏𝑛−1
𝑎′
𝑏0,...,𝑏𝑐−1, 1 ,𝑏𝑐+1,...,𝑏𝑡−1, 1 ,𝑏𝑡+1,...,𝑏𝑛−1

)
=[

𝑈0,0 𝑈0,1
𝑈1,0 𝑈1,1

] (
𝑎𝑏0,...,𝑏𝑐−1, 1 ,𝑏𝑐+1,...,𝑏𝑡−1, 0 ,𝑏𝑡+1,...,𝑏𝑛−1
𝑎𝑏0,...,𝑏𝑐−1, 1 ,𝑏𝑐+1,...,𝑏𝑡−1, 1 ,𝑏𝑡+1,...,𝑏𝑛−1

) (8)

3 OBSERVATION AND MOTIVATION

The goal of quantum circuit simulation is to simulate the process
of applying the gates in a quantum circuit to a quantum state. In
this section, we introduce the existing quantum circuit simulation
technologies and analyze problems that motivate the design of
HyQuas.

3.1 Different Simulation Methods

As shown in Equation (7) and Equation (8), the apply of each gate
consists of 2𝑛−1 (single qubit gate) or 2𝑛−2 (controlled gate) tasks,
and the computation of each task is a small matrix multiplication.
Although these tasks are independent and easily parallelized, they
have poor data locality and can lead to high cache miss rate and low
computing resource utilization. Two main approaches, ShareMem
and BatchMV , are used to address this problem.

ShareMem Method Equation (7) and Equation (8) show that,
after applying a gate on qubit 𝑡 , the new value only depends on

previous values at the same position and that at the position with
only the 𝑡𝑡ℎ index differs. More generally, after applying several
gates that only operate on a certain 𝑘 qubits, the result value only
depends on 2𝑘 initial values, whose index only differs on these 𝑘
positions. Therefore, the circuit can be partitioned into several gate
groups. The gates in each group are only applied on a certain 𝑘

qubits. We call these 𝑘 qubits active qubits. To apply a gate group,
the 2𝑛 values are split into several independent fragments of size
2𝑘 , which can be stored in GPU shared memory. Each fragment is
mapped to one GPU thread block. A thread block loads the fragment
from global memory to shared memory, apply the gates on it, and
store the fragment back into global memory.

Figure 1 shows an example of processing a fragment with 𝑘 = 3.
The active qubits are {0, 2, 4}. 23 = 8 values with only indexes {0,
2, 4} differ are copied to the shared memory and reindexed as 0-7.
Gates on qubits {0, 2, 4} can then be processed locally in the shared
memory, similar to applying gates on a 3-qubit system. And finally,
the 8 values are copied back to their initial position in the global
memory.

0*0*0**
1*0*0**
0*1*0**
1*1*0**
0*0*1**
1*0*1**
0*1*1**
1*1*1**

000
100
010
110
001
101
011
111

000
100
010
110
001
101
011
111

000
100
010
110
001
101
011
111

Apply several gates
in shared memory

000
100
010
110
001
101
011
111

Copy to 
shared memory

000
100
010
110
001
101
011
111

Copy back to 
global memory

Global 
index

Shared 
index

Figure 1: Each GPU block fetches some values from the

global memory and applies several gates to them. ∗with the

same color represents the same value.

BatchMV Method If both target qubits and control qubits of
a gate group come from certain 𝑘 qubits, the gates can be further
merged into a 𝑘-qubit gate. The derived 𝑘-qubit gate is represented
by a 2𝑘 × 2𝑘 matrix to be applied to these active qubits. The rule
of applying the 𝑘-qubit gate is similar to applying a single-qubit
gate. It can be regarded as 2𝑛−𝑘 matrix-vector multiplications tasks.
Each task multiplies the 2𝑘 × 2𝑘 gate matrix to a vector of 2𝑘 values
whose index only differ on these 𝑘 positions.

3.2 Observation and Motivation

Due to the different implementations of ShareMem and BatchMV ,
they have different time complexity on different circuit patterns,
which leads to different performance behaviors. Figure 2 shows the
time to apply a group with various numbers of gates on a given
circuit.

After loading a subset of values into the shared memory, the
ShareMem method needs to apply the gates one-by-one, so the
time grows linearly to the number of gates, while for the BatchMV
method, all gates within a group are merged into a single gate, so
the time consumption is irrelevant to the gate number in the group.
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Therefore, these two methods are suitable for different types of
circuits: ShareMem works better on sparse circuits that each group
contains a small number of gates, while BatchMV works better on
dense circuits with more gates. To make use of the strengths of
the two methods, we propose an adaptive hybrid method, namely
HyQuas, which can automatically partition the circuit into different
gate groups that are specialized for the two methods.

0 25 50 75 100 125 150 175 200
Number of gate

0
50

100
150
200

Ex
ec

. t
im

e 
(m

s)

ShareMem
BatchMV

Figure 2: Time for applying a group of gates on 6 active

qubits inside a 28-qubit system. Results are measured on an

A100-PCIE-32G card.

However, the existing BatchMV method cannot take the advan-
tage of HyQuas’s design for real world applications. As shown
in Figure 2, only when the gate number is larger than 132, the
6-active-qubit BatchMV method can outperform the ShareMem
method, but none of the benchmark circuits in our experiments has
a 6-active-qubit gate group of more than 132 gates. The reason for
such inefficiency is that matrix-vector multiplications are bounded
by the loading of the matrix. We propose TransMM , which is 7.65×
faster than the BatchMV method on such qubit size and can move
the intersection in Figure 2 forward to about 15 gates, to make the
hybrid method practical. TransMM transposes the quantum state to
convert the gate applying to standard GEMM operations that can
be accelerated by the highly-optimized cuBLAS library, plus the
powerful Tensor Cores. We also carefully optimize the ShareMem
method, called OShareMem, by thinking of the gate applying inside
the shared memory (step 2 in Figure 1), rather than only considering
the reduction and acceleration of global memory access (step 1 &
3).

Furthermore, after HyQuas reduces the computation time, the
long communication time across multi-GPU becomes a more emerg-
ing problem. Tomake the simulationmore scalable, HyQuas utilizes
the high throughput GPU-direct connection while still keeping low
communication traffic. Even with our optimized communication
strategy, the communication time still takes a large part of the
overall running time, so a pipeline implementation is provided by
HyQuas to interleave computation with communication.

4 OVERVIEW OF HYQUAS

Figure 3 shows the workflow of HyQuas. HyQuas first analyzes
the given circuit, partitions the circuit into stages that GPUs can
execute independently and detect the subcircuits to be pipelined.
The hybrid partitioner further splits each stage into gate groups
partitioned for the ShareMem method or the TransMM method
respectively. A performance-model based time predictor is used

to predict the time of different ways of partitioning to guide the
selection between the two methods.

The generated schedule is then fed into the executor. For each
stage, the executor packs the data with different destination GPU
separately, sends the data to the corresponding GPU and executes
the pipelined gate groups simultaneously, then executes the re-
maining gate groups. Each gate group is processed with the highly-
optimized OShareMem method or TransMM method, with the deci-
sion from the partitioner.

Stage Partitioner comm

Data Packer

OShareMem

TransMM
TransMMFull

Executor

Partial
Executor

OShareMem
TransMM

Executor

Time Predictor

Partitioner

TransMM
OShareMem

initial stateinput

output

Hybrid Partitioner

circuit

Figure 3: Overview of HyQuas

5 METHODOLOGIES

5.1 Challenges of Hybrid Approach

As mentioned in Section 3.2, the ShareMem method is suitable for
smaller sparse groups while the BatchMV method is more suitable
for larger dense groups. To take advantage of both methods, a
hybrid method is needed to assign different groups with different
methods. Unfortunately, as shown in Figure 2, the current BatchMV
method is not practical for the Hybrid approach due to its low
performance which causes it not to outperform ShareMem until the
gate number in the gate group is larger than 132. The inefficiency
of BatchMV mainly comes from its large amount of memory access.
As for the ShareMem method, although it can beat the current
BatchMV method, careful optimizations are still needed to get better
performance, like redundant computation reduction, data indexing
optimization, and bank conflict mitigation. Hence, TransMM and
OShareMem are proposed as two key components in HyQuas to
provide promising performance for the backend decisions.

Although we have high performance backends, building a hybrid
simulator is still challenging. The first problem is how to partition
a circuit into different groups. Figure 4 (c) gives an example of the
hybrid partition. The dense part in the left bottom corner of the
circuit (shown as the yellow part) should use the TransMM method
while other groups (shown as the blue parts) only contain a small
number of gates and should use the OShareMem method.

However, the hybrid method is more than partitioning the circuit
into groups and find the suitable execution method for each group,
because of the different constraints and preferences of these two
methods. The OShareMem method is more flexible, which does
not require the target qubit of the diagonal gates and the control
qubit of the controlled gate to be active. While for the TransMM
method, to make computation more regular so as to be formulated
as a GEMM, it requires both control qubits and target qubits to be
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(a) OShareMem only (b) TransMM only (c) Hybrid

0

5
4
3
2
1

Qubit

Partition using OShareMem

Partition using TransMM

Single-qubit gate

Controlled gate Target qubit of a controlled gate

Control qubit of a controlled gate

Figure 4: Different ways to partition the circuit into 3-active-

qubit groups

active, and the optimization for diagonal gates mentioned above
should not be applied. Therefore, in Figure 4 (a) and Figure 4 (b),
though bothmethods partition the circuit into groups with at most 3
active qubits, the twomethods result in different partitions, with the
OShareMemmethod has fewer groups. Moreover, in theOShareMem
method, to coalesce the access to global memory, the 3 qubits that
act as the least significant bits need to be selected as the active qubit
(not shown in Figure 4 (a)).

Another problem is the number of active qubits. More active
qubits lead to more gates in each group and fewer groups. For each
group, the OShareMem method needs to read and write the whole
2𝑛 positions once, so the reduction of group number will result in
the reduction of memory traffic and accelerate the simulation. In
HyQuas, the maximum active qubit size for theOShareMemmethod
is set to 10. In the TransMM method, each group is processed with
a transpose and a GEMM, so fewer groups will also lead to fewer
operations. However, the number of multiplications in each GEMM
is 2𝑛+𝑘 , where 𝑘 refers to the number of active qubits. The increase
of active qubits will result in exponential growth of multiplication
operations, so the active qubit size of the TransMM method cannot
be too large. The actual active qubit size of the TransMM method
should be decided with an analysis of the circuit, to balance between
the decrease of group number and increase of GEMM size during
the growth of active qubit size.

Due to the different partition rules and the different active qubit
sizes, the hybrid partitioner should be able to guide the partition
rather than only select the backend for each partitioned circuit.

The rest of this section will give the design details of HyQuas to
address these challenges: Section 5.2 presents the Hybrid approach,
including a hybrid partitioner and a time predictor, while Section 5.3
and Section 5.4 show our TransMM method andOShareMemmethod
respectively.

5.2 Hybrid Approach

The key of the Hybrid approach is how to automatically and near-
optimally partition a given circuit into different groups and decide
the backend used for each group. Thus, there are two main com-
ponents for the Hybrid approach: the hybrid partitioner and the
time predictor. The hybrid partitioner decides how to partition a
circuit into gate groups and the time predictor gives a performance
prediction for a given gate group to help the hybrid partitioner to
find the partition with the best performance.
Hybrid Partitioner Given a circuit, the hybrid partitioner of
HyQuas uses a greedy algorithm to partition the circuit into several
groups that map to different methods, as shown in Algorithm 1.

The partitioner continuously splits out groups of gates from the
circuit until the circuit becomes empty. In each iteration, the gate
group that can be most efficiently processed will be chosen. The
candidate group comes from the following sources:

(1) SHM-GROUPING(circuit): Group a sequence of gates with
no more than 10 active qubits that can be applied with the
OShareMemmethod. The 3 qubits at the lowest positions are
required to be counted as the active qubits. Controlled gates
with a non-active control qubit and diagonal gates with a
non-active target qubit can be included in the group.

(2) TMM-GROUPING(circuit, k): Group a sequence of gates
with no more than 𝑘 active qubits that can be merged into
a 𝑘-qubit gate and executed by the TransMM method. All
control qubits and target qubits need to be active qubits.
In our implementation, only the medium-sized 𝑘 , i.e., 4-7,
will be tried, since smaller 𝑘 will result in smaller and more
groups and inefficient GEMM, while larger 𝑘 will result in
exponential growth of the matrix size.

The efficiency of processing the group is defined by the number
of gates that can be processed within each second:

𝑒 𝑓 𝑓 = N-GATE(𝑔𝑟𝑜𝑢𝑝)/TIME(𝑔𝑟𝑜𝑢𝑝) (9)

N-GATE refers to the number of gates in the group and TIME is
the predicted execution time of the group.

Algorithm 1 The Hybrid Partitioner with a Greedy Search
1: input: The Input Circuit 𝑐𝑖𝑟𝑐𝑢𝑖𝑡
2: output: The Gate Groups 𝑔𝑟𝑜𝑢𝑝𝑠
3: 𝑔𝑟𝑜𝑢𝑝𝑠 ← []
4: while 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 ≠ 𝜙 do

5: 𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝 ← SHM-GROUPING(𝑐𝑖𝑟𝑐𝑢𝑖𝑡)
6: 𝑏𝑒𝑠𝑡𝐸𝑓 𝑓 ← N-GATE(𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝)/TIMESHM (𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝)
7: for 𝑘 ∈ [4, 5, 6, 7] do
8: 𝑔𝑟𝑜𝑢𝑝 ← TMM-GROUPING(𝑐𝑖𝑟𝑐𝑢𝑖𝑡, 𝑘)
9: 𝑒 𝑓 𝑓 ← N-GATE(𝑔𝑟𝑜𝑢𝑝)/TIMETMM (𝑔𝑟𝑜𝑢𝑝)
10: if 𝑒 𝑓 𝑓 > 𝑏𝑒𝑠𝑡𝐸𝑓 𝑓 then

11: 𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝 ← 𝑔𝑟𝑜𝑢𝑝

12: 𝑏𝑒𝑠𝑡𝐸𝑓 𝑓 ← 𝑒 𝑓 𝑓

13: 𝑔𝑟𝑜𝑢𝑝𝑠.append(𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝)
14: 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 .remove(𝑏𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝)
15: return 𝑔𝑟𝑜𝑢𝑝𝑠

Time Predictor To support the selection of different methods,
HyQuas provides an architecture-aware time predictor to predict
the time for a given group applied by different methods.

For the OShareMem method, the time usage can be predicted by
the summation of the time for applying each gate on the 𝑛-qubit
system plus a constant bias representing the overhead like copying
the gate group to the constant memory, transferring data between
the global memory and the shared memory, and some scheduling
overhead:

TIMESHM (𝑔𝑟𝑜𝑢𝑝) = 𝑡𝑖𝑚𝑒_𝑏𝑖𝑎𝑠 [𝑛] +
∑

𝑔∈𝑔𝑟𝑜𝑢𝑝
𝑡𝑖𝑚𝑒_𝑔𝑎𝑡𝑒 [𝑛] [𝑔.𝑡𝑦𝑝𝑒]

(10)
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To apply the merged 𝑘-qubit gate to the 𝑛-qubit system, the
TransMM method needs two periods - transposing the active qubits
to the least significant bits and performing a 2𝑛−𝑘 × 2𝑘 × 2𝑘 GEMM,
i.e., multiplying a 2𝑛−𝑘 × 2𝑘 state matrix with a 2𝑘 × 2𝑘 gate matrix.
Therefore, the time can be predicted by adding the time of the two
periods:

TIMETMM (𝑔𝑟𝑜𝑢𝑝) = 𝑡𝑖𝑚𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 [𝑛]+𝑡𝑖𝑚𝑒_𝑔𝑒𝑚𝑚[𝑛] [𝑘] (11)

The 𝑡𝑖𝑚𝑒_∗ in Equation (10) and Equation (11) are architecture-
sensitive parameters that only need to be collected once on each
platform. To enable the hybrid method of HyQuas, we need to first
run a light-weight preprocessor to collect these values and save
them to the database of the time predictor.

5.3 TransMM Method

As we mentioned in Section 3.2, to make the Hybrid approach
practical, the more efficient TransMM method has to be proposed. In
the BatchMV method, applying a 𝑘-qubit gate on the 𝑘 active qubits
will be regarded as 2𝑛−𝑘 matrix-vector multiplications between the
2𝑘 × 2𝑘 gate matrix and a 2𝑘 fragment of the quantum state. Each
matrix-vector multiplication needs to load the whole gate matrix.
Such pattern brings very large traffic and bounds the usage of the
standard BLAS libraries.

We propose the TransMM method to address these problems.
TransMM regards the 𝑛-qubit state as an 𝑛-dimensional tensor
and the size of each dimension is 2. Then TransMM uses the tensor
transpose algorithm to reorder its dimensions, so that each fragment
can be stored continuously in the memory and thus can be regarded
as a row in a 2𝑛−𝑘 × 2𝑘 matrix, as shown in Figure 5 (b). In this
way, the 2𝑛−𝑘 matrix-vector multiplications of size 1 × 2𝑘 × 2𝑘
are now converted to one 2𝑛−𝑘 × 2𝑘 × 2𝑘 GEMM. This GEMM
computation not only offers better data locality, but also enables
the usage of the highly-optimized cuBLAS library and can enjoy
the huge performance boost provided by Tensor Cores. Moreover,
the state does not need to be reordered back to the initial layout,
because the qubit id of the following gates can be remapped.

Transpose
GEMM

(a) Quantum state 
matrix

(b) Transposed quantum 
state matrix

(c) Gate matrix

Figure 5: Applying one 3-qubit gate with the TransMM
method. Blocks with the same color are in the same frag-

ment.

Applying a 𝑘-qubit gate to the lowest 𝑘 qubits of an 𝑛-qubit
system is identical to a 2𝑛−𝑘 × 2𝑘 × 2𝑘 GEMM. The number of
complex number multiplications is 2𝑛+𝑘 , which increases with the
increment of 𝑘 . However, Figure 6 shows the time of such GEMM
operations can decrease with the growth of 𝑘 on both platforms,
because GEMM on GPU has higher flop/s when all dimensions are
large. Therefore, if the applying of 𝑘-qubit gates on other qubits
can be converted to the 2𝑛−𝑘 × 2𝑘 × 2𝑘 GEMM operation, they can

simultaneously benefit from fewer gates offered by gate merging
and higher throughput offered by GEMM with GPU-suitable size.
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Figure 6: cuBLAS GEMMperformance of shape 2𝑛−𝑘 ×2𝑘 ×2𝑘 ,
which is the core operation of applying a k-qubit gate to an

n-qubit system

5.4 OShareMem Method

The OShareMem method is proposed to further improve the perfor-
mance of HyQuas. In general, three main optimizations are done
to reduce the redundant computation, optimize the data indexing,
and mitigate the bank conflict.
Reducing redundant computation by task merging In the
ShareMem method, each thread is assigned with one small matrix
multiplication task. However, same operations exist in each task,
eg., loading the gate and jumping to the code for the gate. When we
merge multiple tasks to one thread, these operations only need to
be done once on each thread, and can be reused by multiple tasks.
Therefore, the overall operations can be reduced. To ensure that
enough threads are active in the GPU streaming multiprocessor,
the total thread number cannot be too small. In practice, the thread
number is chosen with a balanced usage of shared memory and
register within a block.
Lookup table based indexing. The 𝑖0, 𝑖1, ..., 𝑖𝑘−2-th task of ap-
plying a gate on qubit 𝑡 is to update the following two positions:

lo = 𝑏0, 𝑏1, ..., 𝑏𝑡−1, 0 , 𝑏𝑡+1, ..., 𝑏𝑘−1

hi = 𝑏0, 𝑏1, ..., 𝑏𝑡−1, 1 , 𝑏𝑡+1, ..., 𝑏𝑘−1
(12)

, where

𝑏𝑥 =

{
𝑖𝑥 if 𝑥 < 𝑡

𝑖𝑥−1 if 𝑥 > 𝑡
(13)

, i.e., these two positions can be derived from inserting 0 or 1 to the
𝑡𝑡ℎ position of 𝑖0, 𝑖1, ..., 𝑖𝑘−2. In a general programming language,
it can be implemented by the following code, which consists of 8
integer operations (1 << 𝑡 is only counted once).

1 lo = (pair_id >> t << (t+1)) | (pair_id & ((1<<t) -1));
2 hi = lo | (1 << t);

However, if we use a round-robin schedule to assign the pair to
the threads, the increase of index is not related to the thread index
within a block, so we can use a lookup table to save the index
increment between the tasks. The num_task tasks on the target
qubit 𝑡 can be performed with the following code.
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1 int add[num_task] = get_add(num_task , t);
2 int lo = (thread_id >>t<<(t+1)) | (pair_id &((1<<t) -1));
3 int hi = lo | (1 << t);
4 for (int i = 0; i < num_task; i++) {
5 APPLY_GATE(gate , lo , hi);
6 lo += add[i]; hi += add[i];
7 }

As a result, each reindexing only contains two integer operations
(as in line 6), and it is also more friendly for compiler optimization.
Mitigate the shared memory bank conflict. In the ShareMem
method, the data are stored sequentially in the shared memory, as
shown in the left figure of Figure 7. Each grid represents a 128-bit
double-precision complex type amplitude in the quantum state. For
example, grid 0 stores the 0𝑡ℎ data (000**00), and grid 1 stores the
1𝑠𝑡 data (100**00). Be careful that the least significant bit is on the
left most of the index. Grids within the same column belong to the
same shared memory bank. This layout can cause bank conflicts on
gates applied to qubit 0, 1, and 2. As shown in Figure 7, to collect
the data for a gate on qubit 0, the 32 threads within a wrap will
first visit positions {0, 2, 4, 6, ..., 60, 62} (the green grids) respectively,
and then visit {1, 3, 5, 7, ..., 61, 63} (the white grids). Both of the two
visits can only access half of the columns in that matrix, so each
visit wastes half of the banks and is serialized to 8 shared memory
accesses. However, if the 𝑖𝑡ℎ data is stored to the 𝑖 ⊕ 𝑖

8 (⊕ denotes
bit-wise exclusive-or) position as the right figure of Figure 7, the
data within each visit is evenly divided into the 8 columns, so all
banks can be utilized and only 4 sharedmemory accesses are needed
for each visit. This remapping can also solve the bank conflict of
single-qubit gates on qubit 1 and qubit 2, and mitigate the bank
conflict of controlled gates on qubits 0, 1, and 2.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14

18 19 16 17 22 23 20 21
27 26 25 24 31 30 29 28
36 37 38 39 32 33 34 35
45 44 47 46 41 40 43 42
54 55 52 53 50 51 48 49
63 62 61 60 59 58 57 56

𝑖𝑖 ⊕
𝑖𝑖
8

8 × 128 bits in each row 8 × 128 bits in each row
(a) The sequential layout (b) The remapped layout

Figure 7: Fix shared memory bank conflicts via remapping

6 DISTRIBUTED SIMULATION

6.1 Global-local Swap Method

HyQuas uses the global-local swap method [27] to collaborate
multiple GPUs. When HyQuas is available to 2𝑔 GPUs, it will select
𝑔 qubits as global qubits and mark the other 𝑛 − 𝑔 qubits as local
qubits. The amplitudes with the same index on the global qubits
are partitioned into the same GPU. After such a partition, the gates
operating on the local qubits can be processed within the GPUs
while communication is needed for the gates on the global qubits.
Figure 8 shows an example of simulating a 5-qubit system with
22 GPUs, i.e., 𝑔 = 2. Qubits 3 and 4 are global qubits. Amplitudes
within the same GPU share the same index on these two qubits.
The applying of gates to qubit 0, 1, and 2 can be processed within

each GPU, which is the same as applying gates in a 3-qubit system,
as shown in Figure 8(a). However, as shown in Figure 8(b), gates
on the global qubits 3 and 4 cannot be applied now, because every
pair of data whose 3𝑟𝑑 index or 4𝑡ℎ index differs is partitioned to
different GPUs.

To have the ability of simulating gates on all qubits, we need to
partition the circuit into several stages. For example, to simulate
the 5-qubit circuit in Figure 9 on 22 GPUs, two stages are needed.
Stage 1 handles G1, G2, G3, and G4 on qubits 0, 1, and 2. Stage 2
handles G5, G6, and G7 on qubit 1, 3, and 4. G2 is boxed in Figure 9.
Its execution can be delayed to the communication stage between
stages 1 and 2, which will be discussed in Section 6.2.
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(a) Gates can be applied on local qubits
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Figure 8: Apply different gates to a 5-qubit system simulated

by 22 = 4 GPUs
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Figure 9: Split a 5-qubit quantum circuit into 2 stages

6.2 Data Redistribution for New Global Qubits

To change the global qubits to enter the next stage, the redistribution
of the values is needed. Each value’s target GPU is decided by the
index of the new global qubits. The data redistribution is processed
in the following steps:

(1) Pack the amplitudes that will be sent to the same GPU to a
consecutive segment.

(2) Send the segments to the target GPUs and receive the seg-
ments from other GPUs simultaneously.

Figure 10 shows the workflow of switching from stage 1 to stage
2 for the circuit in Figure 9. Each GPU needs to send 2 amplitudes
to each of the other GPUs. The target GPU is indexed by the new
global qubits {0,2}. For example, 0 0 0 1 0 will be sent to GPU 0,
and 1 0 1 1 0 will be sent to GPU 3. In step 1, a local transpose is
issued, making the amplitudes with the same qubit 0 and qubit 2
consecutive. In step 2, the amplitudes are sent to the target GPU.
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Figure 10: Change the global qubits from {3,4} to {0,2} to go into stage 2. Gates on qubit 2 can be processed simultaneously.

If a qubit is a local qubit in both the current stage and the next
stage, gates to be applied to that qubit in the current stage can still
be processed when the data arrives at the target GPU, so these gates
can be processed in step 2 during the communication. Each data
pair with only the index of that qubit differs have the same source
GPU and target GPU, so they will be packed to the same segment
in step 1 and be sent together in step 2. Once a segment arrives,
the gate can be applied on the data pairs in the segment, so we
do not need to wait until the end of communication to continue
the processing of the gates. For example, in Figure 9, qubit 1 is
a common local qubit in the two stages, so G2 can be processed
during communication. As shown in Figure 10, data with only the
1𝑠𝑡 index differs are packed into the same segment (with the same
background color) in step 1, and sent to the same target GPU in step
2. Gates on qubit 1 can be processed locally inside each segment.
so the applying of gates in each segment can be started once that
segment arrives at the target GPU.

7 EVALUATION

7.1 Experiment Setup

We evaluate HyQuas on a V100 platform and an A100 platform.
The V100 platform has 4 V100-SXM2-16GB GPUs fully connected
by NVLink 2.0. It has two Intel Xeon E5-2620 v4 CPU sockets. The
compilers are GCC 8.3.0 and CUDA 10.2.89. The A100 platform has
one A100-PCIE-40GB GPU and one AMD EPYC 7282 CPU. The
compilers are GCC 8.3.0 and CUDA 11.0.2.

The quantum circuits used in experiments are several 28-qubit
circuits collected from Qiskit [23], OpenQASM [1], Cirq [5], and
OpenFermion [6], as listed in Table 1. The gate number of these
circuits varies from 83 to 4558. In addition, bc circuits with 24 to 30
qubits are used to evaluate the performance with different numbers
of qubits.

All these circuits are dumped into OpenQASM 2.0 format, with
gates defined in “qelib1.inc”. Gates not included in this header file
are automatically decomposed by Qiskit or Cirq. HyQuas can parse
the circuits and execute them automatically. The cuTT library [29]
is used for the transpose in HyQuas. cuTT does not support inplace
transpose, so an additional buffer is used to save the transpose
result. All experiments are done with double precision by default.

7.2 Overall Performance

In this section, we compare HyQuas with state-of-the-art quan-
tum circuit simulators. The versions of the simulators are listed in
Table 2.

Table 1: Evaluated quantum circuits

Name Source Gates

Basis change (bc) OpenFermion 4558
Bernstein–Vazirani algorithm (bv) OpenQASM 83

Hidden shift (hs) Cirq 144
Quantum approximate optimization Cirq 1652algorithm (qaoa)
Quantum Fourier transform (qft) Qiskit 406

Quantum volume (qv) OpenQASM 1540
Quantum supremacy circuit (sp) Cirq 883

Table 2: The versions of quantum simulators used for com-

parison

Simulator Version GPU package

QCGPU [31] v0.1.1 N/A
Qibo [22] v0.1.2 N/A
Qiskit [23] v0.23.4 qiskit-aer-gpu v0.7.3
QuEST [30] v3.2.0 N/A
Qulacs [42] v0.2.0 qulacs-gpu v0.2.0
Yao [36] v0.6.3 CuYao v0.2.7

For simulators that do not support parsing OpenQASM format,
we implemented a parser to parse the code and convert it to their
APIs. Some simulators do not support all gates in “qelib1.inc”. When
testing these simulators, we change the unsupported gates to other
gates with less computation, e.g., changing crx gates to cx gates.
QCGPU does not support double precision, so its single-precision
performance is reported. Qibo depends on TensorFlow. We use
TensorFlow 2.3.1 on the V100 platform as the default configuration
of Qibo, and TensorFlow 2.4.1 on the A100 platform to enable the
sm_80 support. Some performance-independent modifications are
made due to the API changes from TensorFlow 2.3 to TensorFlow
2.4. Qulacs needs to configure an opt_level parameter. The best
value is different for the benchmark circuits. We set opt_level
to 4 on both platforms, which minimizes the geometric mean of
execution time.

Figure 11 shows that HyQuas leads to 2.73× and 2.20× speedup
on average on one V100 GPU and one A100 GPU respectively. The
largest speedup comes from qft, which is a sparse circuit with a
large number of controlled diagonal gates, so it cannot be simulated
efficiently with the BatchMV method in Qulacs. For this circuit,
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Figure 11: The comparison of single-GPU simulations

among different simulators. Execution time is normalized

to the execution time of HyQuas.
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Figure 12: The performance on multi-GPU. Execution time

is normalized to the single-GPU time of HyQuas.

HyQuas achieves 10.71× and 9.82× speedup on one V100 GPU and
one A100 GPU respectively.

Only Qibo supports multi-GPU simulation with an arbitrary
number of GPUs. Figure 12 shows that when 2 V100 cards and 4
V100 cards are used, the time will be 2.35× and 2.52× longer than
the single V100 version. However, HyQuas can scale to 2 GPUs and
4 GPUs, with an averaged 1.56× and 2.93× speedup over the single
V100 version.

HyQuas can have up to 227× speedup (129× on average) over
Qibo on the 4-V100 platform. Such speedup is primarily from re-
duced communication traffic and improved communication perfor-
mance of HyQuas. Figure 13 compares the communication traffic of
Qibo and HyQuas. On average, HyQuas requires 8.14× and 9.54×
less communication traffic than Qibo on 2 V100 cards and 4 V100
cards respectively, because HyQuas partitions the circuits more
carefully and results in fewer stages. Moreover, most of HyQuas’s
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Figure 14: Comparison between the three methods

communication goes through the fast GPU-to-GPU mechanism,
which can be accelerated by NVLink. Qibo only uses the slow CPU-
to-GPU and GPU-to-CPU communication based on PCIe.

7.3 Single GPU Performace

In this section, we evaluate the performance of HyQuas with a
single GPU. All experiments run on one V100-SXM2-16GB GPU
(V100) or one A100-PCIE-32GB GPU (A100).

Hybrid Approach Figure 14 shows the performance compar-
ison of the OShareMem method, the TransMM method, and the
Hybrid approach. On V100, the Hybrid approach has the best per-
formance, with an averaged 1.15× and 2.09× speedup over the OS-
hareMem method and the TransMM method respectively. And on
A100, the Hybrid approach outperforms OShareMem and TransMM
by 1.33× and 1.73× respectively. It can find a schedule that ex-
ecutes faster than both of the two methods. For example, when
executing the qv circuit on𝑉 100, the Hybrid approach is 1.32× and
1.05× faster than the OShareMemmethod and the TransMM method
respectively.

Figure 15 shows the prediction precision of the time predictor
on the two platforms. Each data point represents an OShareMem
group or a TransMM group in the bc circuit. The average relative
error on 𝑉 100 and 𝐴100 are 2.1% and 4.9%, respectively. This preci-
sion is enough for us to make a reasonable decision between the
OShareMem method and the TransMM method.
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Figure 15: The predicted time and actual execution time of

the groups partitioned from the bc circuit

Table 3: The partition time (Part.) and execution time (Exec.).

Geo. refers to the geometric mean.

Name

Part. Exec.

Name

Part. Exec.

(ms) (ms) (ms) (ms)

bc 61.68 2679.9 qft 0.78 162.9
bv 0.51 62.9 qv 34.84 856.9
hs 0.68 90.7 sp 3.40 545.5

qaoa 30.34 655.6 Geo. 4.82 358.7

Table 4: The partition time (Part.) and execution time (Exec.)

of bc circuit with different numbers of qubits

Qubits 24 25 26 27 28
Gates 3330 3619 3920 4233 4558

Part. (ms) 55.77 60.53 62.30 56.46 61.68
Exec. (ms) 121.1 257.3 554.7 1188.8 2679.9

In Table 3, we report partition time and execution time of the
benchmark circuits on V100 as well as their geometric mean. The
preprocessing stage takes 190 seconds, but it only needs to run
once on each platform. In all benchmark circuits, the partition time
is less than 5% of the corresponding execution time. Most time of
the partition stage is spent on cuTT generating the execution plan
of the transposes used in TransMM method. Therefore, the dense
circuits, i.e., bc, qaoa, and qv spends much longer time to partition
the circuit than the sparse circuits bv, hs, qft and sp.

Table 4 shows the partition time and execution time of different
scale bc circuits on V100. The partition time grows almost linearly
with respect to the number of gates in each circuit, while the ex-
ecution time grows exponentially with respect to the number of
qubits. Therefore, the partitioning overhead becomes smaller when
circuits with more qubits are simulated.

TransMM Method Figure 16 shows the time for processing
a merged gate that targets on different numbers of qubits with
the BatchMV method in Qulacs [42] and our TransMM method.
Due to the transpose overhead, the TransMM method is slower
than the BatchMV method when the merged gate size is 3 on the
A100 platform and 3 or 4 on the V100 platform. However, a merged
3-qubit gate can only contain a small number of original gates,
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mark circuits

which can be processed efficiently with the ShareMem method.
And there is no obstacle for us to integrate the BatchMV method
into HyQuas. With a larger size of merged gates, the TransMM
method shows significant speedup over the BatchMV method. For
example, on V100, the TransMM method outperforms the BatchMV
method by 5.52× and 7.71× respectively on 6-qubit gates and 10-
qubit gates. On A100, the speedup is even larger due to the fast
GEMM provided by double-precision Tensor Cores. The TransMM
method can accelerate the applying of 6-qubit gates and 10-qubit
gates by 8.43× and 13.32× respectively.

In Figure 17, we summarize the time and number of merged
gates with the change of the largest active qubit size. The reported
time and gate number are calculated from the geometric mean of
the seven 28-qubit benchmark circuits. With the increase of active
qubit size, the execution time first decreases due to the reduction of
total merged gates, and then increases because of the exponential
growth of the GEMM time.

OShareMem Method Figure 18 shows the time for processing
one gate by the ShareMem method with the three optimizations
on V100. The “baseline” is the shared memory based method in
Section 3.1. None of the existing shared memory based simulators
[7, 24, 26, 47] is open sourced, so it is implemented by ourselves.
“Multitask”, “lookup”, and “bank” refer to the three optimizations in
Section 5.4. Due to the bank conflict, there is a clear difference in
the time for gates on qubit 0-2 and qubit 3-9, but the range of time
in each group of qubits is within 3 us. On average, the multitask
optimization and the lookup optimization have a speedup of 1.76×
and 1.83× over the baseline. The bank optimization has another
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1.67× speedup over the lookup version for gates on qubit 0-2 and
keeps the time for gates on qubit 3-9 almost unchanged.

7.4 Multi-GPU Performance

Figure 19 shows the performance gain of overlap execution on
different scales. With 2 and 4 V100 cards, the overlap execution
can lead to an average speedup of 1.06× and 1.12× over the no
overlapped version respectively. Overlap execution accelerates the
4 V100 hs circuit by 1.43×. In this circuit, communication takes
53.2% of the total time and 118 (81.9%) of its gates can be executed
in pipeline, so the communication latency can be well hidden.

In Figure 20, we report the result of the weak scaling test on
the bs circuits with different qubits. The data points representing
the weak scaling tests are connected with dotted lines. The parallel
efficiency, defined as 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐺𝑎𝑡𝑒1𝑔𝑝𝑢

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐺𝑎𝑡𝑒𝑛𝑔𝑝𝑢
, varies from 85.6% to 90.8%

on 2 V100 cards and from 83.0% to 90.0% on 4 V100 cards.

8 RELATEDWORK

There are several existing quantum circuit simulators for different
scales and hardware [2].

Some works have directly simulated quantum circuits on super-
computers [19, 27, 32, 41].Wu et al. [46] and Zulehner et al. [49] save
state in a compressed format to save memory, thus being able to sim-
ulate more qubits. And many algorithms [16, 18, 28, 34, 39, 43, 44]
have been designed to simulate the quantum supremacy circuit [15]
with a large number of qubits and a limited depth, to explore the
frontier of “quantum supremacy”.

There are also simulators designed for small clusters, especially
for GPU platforms [7, 10, 11, 21–23, 23–26, 30, 31, 34, 36, 42, 47].
CUDA iswidely used for implementing quantum simulators onGPU
platform, while TensorFlow [22] and OpenCL [31] are also used in
some simulators. Jones et al. [30] have shown that simulation on a
single Tesla K40m GPU is 5× faster than on a 24-thread CPU.

To improve the performance of GPU quantum simulation, many
works [7, 24–26, 47] choose to copy partial quantum states into
shared memory to apply gates with lower latency. Some of these
simulators [24, 26, 47] optimize the global memory bandwidth of
copying states into shared memory by coalescing the visit of global
memory. Qulacs [42] tries to reduce the total gate number by merg-
ing quantum gates.

A common way of implementing a multiple-GPU quantum cir-
cuit simulator is to distribute 2𝑛 amplitudes to GPUs and exchange
intermediate amplitudes with a chunk-based method [21, 23, 47] or
with the global-local swap method [22, 34] proposed in distributed
CPU quantum circuit simulators [20, 27]. However, none of these
simulators would scale well if they adopted the accelerated single
GPU implementation in HyQuas.

The need for simulators in quantum area is not limited to the
tasks of getting the state after applying a sequence of gates. Sam-
pling [33], density matrix simulation [32], and equivalent checking
[17] are also needed by quantum scientists. HyQuas has the poten-
tial of being a backend for these tasks and accelerates them.

9 CONCLUSION

We propose HyQuas, a high performance quantum circuit simula-
tion system that can automatically analyze the pattern of a given
quantum circuit and choose the proper simulation methods for
different parts of it. HyQuas also provides two highly optimized
methods, OShareMem and TransMM , as well as a GPU-centric com-
munication pipelining approach. Experiments show that HyQuas
can achieve up to 10.71× speedup on a single GPU and 227× speedup
on a GPU cluster compared with state-of-the-art simulators.
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