
Efficiently Emulating High-Bitwidth Computation with
Low-Bitwidth Hardware

Zixuan Ma
ma-zx19@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Haojie Wang
wanghaojie@tsinghua.edu.cn

Tsinghua University
Beijing, China

Guanyu Feng
fgy18@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Chen Zhang
zhang-c21@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Lei Xie
xie-l18@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Jiaao He
hja20@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Shengqi Chen
csq20@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Jidong Zhai
zhaijidong@tsinghua.edu.cn

Tsinghua University
Beijing, China

ABSTRACT

Domain-Specific Accelerators (DSAs) are being rapidly developed to
support high-performance domain-specific computation. Although
DSAs provide massive computation capability, they often only sup-
port limited native data types. To mitigate this problem, previous
works have explored software emulation for certain data types,
which provides some compensation for hardware limitations. How-
ever, how to efficiently design more emulated data types and choose
a high-performance one without hurting correctness or precision
for a given application still remains an open problem.

To address these challenges, we present Ape, which can 1) pro-
vide different strategies for emulating high-bitwidth data types
using native data types with in-depth error analysis; 2) dynamically
and automatically select proper data types and generate efficient
code for a given computation in fine-granularity to achieve higher
performance while maintaining both correctness and precision at
the same time without human efforts. We implement Ape on both
NVIDIA Tensor Core and Huawei Ascend. Results show that Ape
can boost General Matrix Multiplication and convolution by up to
3.12× and 1.86× on Tensor Core over CUDA Core and accelerate
various applications by up to 1.78× (1.65× on average).

CCS CONCEPTS

• Computing methodologies → Parallel algorithms.

KEYWORDS

Domain Specific Accelerator, Emulation, Tensor Core

ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9281-5/22/06.
https://doi.org/10.1145/3524059.3532377

ACM Reference Format:

Zixuan Ma, Haojie Wang, Guanyu Feng, Chen Zhang, Lei Xie, Jiaao He,
Shengqi Chen, and Jidong Zhai. 2022. Efficiently Emulating High-Bitwidth
Computation with Low-Bitwidth Hardware. In 2022 International Conference
on Supercomputing (ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3524059.3532377

1 INTRODUCTION

Domain-Specific Accelerators (DSAs) have been increasingly devel-
oped in recent years [17, 20, 21]. To achieve high performance, most
DSAs only support specific computation types based on a limited
set of data types. These restrictions largely limit the extensive usage
of DSAs. For example, NVIDIA introduced a widely known DSA
called GPU Tensor Core [32]. Tensor Core can provide giant perfor-
mance leaps on General Matrix Multiply (GEMM) computation over
traditional CUDA Core (same GPU without using Tensor Core) for
half-precision and double-precision floating point data types. How-
ever, Tensor Core does not support widely-used single-precision
floating point data types (i.e., FP32). Therefore, users have to fall
back to traditional CUDA Core or use double-precision floating
point (FP64) Tensor Core instead when computing with FP32 type,
hence hindering the huge performance boost brought by Tensor
Core.

Tomitigate this problem, previousworks [11, 12, 29] have studied
the feasibility of emulating high-bitwidth types using low-bitwidth
types, e.g., emulating FP32 using FP16. These works can extend
the usage of DSAs and enable better utilization of the computation
capability. But these works do not take an in-depth error analysis of
emulated data types, thus missing potential optimization opportuni-
ties in both terms of representation capability (representation range
and precision) and performance. In fact, by carefully designing em-
ulation algorithms, we can enable DSAs to support more data types
besides limited native data types, including floating point data types
and integer data types, as well as benefit from large performance
enhancement. As more native data types are supported on DSAs,
how to design more emulated data types and efficiently select a

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

https://doi.org/10.1145/3524059.3532377
https://doi.org/10.1145/3524059.3532377
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524059.3532377&domain=pdf&date_stamp=2022-06-28

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

Table 1: Native floating-point and emulated data types on

NVIDIA A100 with their corresponding precision specifica-

tions (number of bits) and peak performances (TFLOPS).

Native data types Emulated data types
FP64 FP32 FP16 TF32 BF16 FP[11, 29] FP32-F FP32-T FP32-B

Exponent 11 8 5 8 8 5∗ 5 8 8
Significand 52 23 10 10 7 21† 22 22 23

CUDA Core 9.7 19.5 78 N/A 39 - - - -
Tensor Core 19.5 N/A 312 156 312 78 104 52 52

correct yet high-performance data type for a given data type still
remains an open problem.

We take the floating point types on NVIDIA Tesla A100 Ten-
sor Core GPU [32] as an example to give a more concrete illus-
tration. Left part of Table 1 lists native floating-point data types
with precision specifications and performance. The main differ-
ence between these data types is the bitwidth of exponent and
significand. FP32 is a native data type with representation range
of [2−126, 2+127] and precision of 2−23, and its peak performance is
only 19.5 TFLOPS on CUDA Core. Previous works [11, 29] emulate
FP32 using half-precision floating point (FP16), with representation
range of [2−2, 215], precision of 2−21, and peak performance of 78
TFLOPS. In our work, we take an in-depth analysis of numerical
error and propose an optimized emulation method named FP32-F,
which also emulates FP32 using FP16, but extends representation
range, precision, and peak performance to [2−14, 215], 2−22 and 104
TFLOPS, respectively. Moreover, we design new emulation meth-
ods, FP32-T and FP32-B, which emulate FP32 using tensor floating
point (TF32) [23] and brain floating point (BF16) [38], respectively.
The error analysis also helps us optimize FP32-T and FP32-B for
better representation capability and performance. The summariza-
tion of emulated data types is listed on the right of Table 1. Note
that compared with native FP32, FP32-F provides a much narrower
data representation range, and both FP32-F and FP32-T have 1-bit
precision loss, while FP32-F has much higher performance than
FP32-T and FP32-B.

To achieve efficient emulation on a DSA, we still face challenges
of how to materialize various emulated data types. With both native
and emulated data types of different representation capability and
performance, we have more choices for a given application. During
the execution of an application, the values of variables in a program
are always changing. The requirements for the precision and data
representation range of data types will also change. In addition,
for a large data object, different regions of data may have diverse
requirements for specific data types. Considering the dynamicity
and space pattern of the input data, how to select the proper data
type with low overhead is challenging.

To address these challenges, we design a lightweight emulation
adapter with fine granularity. This adapter automatically analyzes
data patterns for a given application at runtime and selects the most
suitable type guaranteeing both correctness and performance with
low overhead. The selection is performed on small blocks instead
∗This emulated type presented by previous works has 5 exponent bits, but it only has
a range of [−2, +15]. This range is much smaller than that can be represented by 5
exponents bit, i.e., [−14, +15].
†[11] demonstrates that its emulation method has 21 significand bits, and [29]’s emu-
lation method has 20 significand bits.

of the whole data space, which enables using mixed data types to
fully utilize the computation capability for different data patterns.

Bringing up all together, we propose Ape, a system that presents
several highly efficient data emulation methods for both floating
point types and integer types, with a lightweight fine-granularity
adapter to automatically select mixed data types from both native
and emulated data types for a given application, to better utilize the
computation capability of DSAs. Compared with previous works,
our approach can enlarge the representation range of emulated
data types and improve the computation performance while au-
tomatically choosing the most suitable data types. We implement
Ape on both NVIDIA and Huawei accelerators, and support both
floating point emulation and integer emulation, to verify our idea.
Moreover, high-performance kernels with the support of different
emulated data types are implemented and wrapped up into a BLAS-
like library to make our system complete and available to end-users
in different levels.

We make the following contributions in this work.
• We propose different algorithms to emulate high-bitwidth data
types with low-bitwidth data types and perform in-depth anal-
ysis to optimize the representation capability and performance.
Compared with previous works, our algorithms can expand data
range, increase data precision, and significantly improve compu-
tation performance.

• We design a fine-grained lightweight data adaptation algorithm
that can automatically select a proper data type according to
the requirement of precision for a given application on specific
hardware.

• We implement Ape on both NVIDIA Tensor Core GPUs and
Huawei Ascend processors, supporting emulations of floating
point and integer types, and provide a user-friendly API to facili-
tate porting legacy code with our library.

• The evaluation shows that Ape can achieve significant perfor-
mance improvement. On NVIDIA Tesla A100 GPU,Ape can boost
GEMM and convolution by up to 3.12× and 1.86×, and accelerate
various applications by up to 1.77×.

2 BACKGROUND AND RELATEDWORK

2.1 Domain-Specific Accelerator

In order to accelerate domain-specific applications, various Domain-
Specific Accelerators (DSAs) are being designed. Compared with
general-purpose chips, DSAs can achieve much higher performance
on specific applications. For example, existing DSAs, including
NVIDIATensor Core [33], Google Tensor Processing Unit (TPU) [21],
and Huawei Ascend AI processor [25], are designed for AI applica-
tions, which mainly focus on linear operators with low-bitwidth
data types like half-precision floating-point or low-bitwidth integer
types.

NVIDIA Tensor Core NVIDIA Tensor Core is first introduced
in NVIDIA Volta [33] GPUs. Tensor Core can provide powerful
computing capability for Matrix Multiply-Accumulate (MMA) oper-
ations. For example, Tensor Core in Tesla A100 GPU has a floating-
point computation throughput of up to 312 TFLOPS. Figure 1 shows
half-precision floating point computation performed on Tensor
Core: Tensor Cores read two half-precision input data and perform

Efficiently Emulating High-Bitwidth Computation with Low-Bitwidth Hardware ICS ’22, June 28–30, 2022, Virtual Event, USA

Half
Precision

Half
Precision

Single
Precision

Single
Precision

Single
Precision+

Figure 1: MMA operation on Tensor Core.

a half-precision matrix multiplication without loss of precision.
Intermediate results are stored in single-precision registers, and
accumulation is also performed with single-precision. Both No.2
and No.3 supercomputers on the Top500 [9] list, i.e., Summit and
Sierra [37] are equipped with NVIDIA Tensor Core GPUs.

Huawei Ascend AI Processor Huawei Ascend AI processors
are designed for AI applications, supporting both training and
inference. We take Ascend 910A as an example. Ascend 910A has a
peak performance of 256 TFLOPS on FP16 and 512 TOPS on INT8.
910A is equipped with 32 GB HBM, with a bandwidth of 1228 GB/s.
Ascend 910A does not support FP64 operations. Peng Cheng Cloud
Brain II [34] is a large AI computing platform equipped with 4, 096
Ascend 910A, with a peak performance of 1 EFLOPS with FP16.

2.2 Low-Bitwidth Data Types

Floating-Point Data Types FP16 (IEEE 754 Half-precision Float-
ing Point) [1], BF16 (Brain Floating Point) [38], and TF32 (Tensor
Floating Point) [23] are commonly supported by DSAs. As shown
in Figure 2, FP16 has 5 exponent bits and 10 significand bits. Com-
pared with FP32, FP16 has a much narrower data range and lower
precision. NVIDIA Tensor Core and Ascend processor support this
type. BF16 is proposed by Google Brain, which has 8 exponent bits
and 7 significand bits and can express floating point numbers with
a similar range as FP32 but with much lower precision. NVIDIA
Ampere GPUs and TPUs support this type. TF32 is proposed by
NVIDIA. TF32 has 8 exponent bits and 10 significand bits, express-
ing floating point numbers with a similar range as FP32 and the
same precision as FP16 but occupies the same storage space as FP32
(4 bytes). Now, only Nvidia Ampere GPUs support this data type.

Fixed-Point Data Types Fixed-point is another method to repre-
sent a real number, usually implemented by integers. Low-bitwidth
fixed-point data types are commonly used in the AI domain. Not
only for inference [22, 24] but training [18, 26], low-bitwidth datatype
can reduce memory usage and improve performance without losing
much accuracy. To meet the requirement of fixed-point, existing
DSAs support acceleration for various integer types. For example,
Edge TPU [15] and Ascend support INT8. NVIDIA Tensor Core on
Ampere GPU supports INT8, INT4, and INT1. All these DSAs use
INT32 to accumulate the production of these data types to avoid
overflow on specific computation.

2.3 Related Work

Datatype Extension Several previous works [7, 16, 27, 36] em-
ulate high-bitwidth data types with low-bitwidth types on GPUs
and IoT devices. Due to lack of hardware support, they need to

FP32

FP16

TF32

BF16

Sign Exponent Significand

INT32

INT8

Figure 2: A comparison of different data types.

issue dozens of low-bitwidth instructions to emulate high-bitwidth
operators, resulting in inefficiency. For example, Thall et al. [36]
use 20 single-precision instructions on GPUs to emulate a double-
precision addition.

Markidis et al. [29] leverage FP32 accumulation on Tensor Core
to emulate a single-precision GEMM based on four half-precision
(FP16) GEMM. However, as described in Section 4.1, their emu-
lated type only supports a limited range, i.e., [0.25, 6.55 × 104].
EGEMM-TC [11] highly optimized Markidis’s approach on Turing
architecture by using SASS assembly-style instructions. However,
EGEMM-TC also suffers the range limitation ofMarkidis’s approach.
Meanwhile, the SASS-based implementation cannot be directly used
on other GPUs such as NVIDIA Tesla V100 and A100, which limits
its usage. Our system provides a larger data representation range
for FP16 emulated single-precision type with significant perfor-
mance improvement, along with other emulated data types with
an auto-adaptive approach.

Datatype Adaptation The trade-off of accuracy and performance
makes selecting a proper data type necessary. Some recent efforts [5,
6, 35] focus on rigorous floating-point error analysis to down-cast
precision for better performance while incurring a given error
bound across all program inputs [5]. Although these works provide
sufficient precision for any input, they are limited by lengthy anal-
ysis due to their static and formal methods. For example, the state-
of-the-art system, Satire [6] takes about 10 minutes to complete
analyzing a matrix multiplication on 128 × 128 matrices. Instead of
costly analysis, our approach is lightweight and focuses on select-
ing a proper type based on representation ranges of floating-point
data types at runtime.

3 OVERVIEW OF APE

3.1 Ape Framework

Ape is designed as a data type emulator and performance booster
that can emulate high-bitwidth data types using native data types
and automatically select data types with the best performance with-
out hurting accuracy. By dynamically partitioning and analyzing
input data for a given program, Ape can optimize computation by
selecting a proper data type for each fine-grained data block, thus
improving computation efficiency.

Figure 3 gives an overview of Ape. Ape consists of two major
modules, Emulator and Adapter. The emulator provides all avail-
able native and emulated data types of a DSA. The adapter is in
charge of selecting a mixed data type, including both native and

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

Op1[T1,T2,T3]

A[T1] B[T2]

C[T3]

Op2,i[T4,T5,T6]

Ai[T4] Bi [T5]

Ci [T6]

Adaptor

Data Partition

Data-aware
Mask Generation

Strategy Decision

Emulator

Emulated data
types and
operators

Native data
types and
operators

Code
Generation

Ai, Bi, Ci

Mask

Analysis

APE

Figure 3: Ape overview.

A11

A21

A31

A12

A22

A32

B11

B21

B13B12

B22 B23

C11

C21

C31

C12

C22

C32

C13

C23

C33

A
B

C

× =

Gen mask

8

5

5

5

8

5

5

5

85

5 5

MA
MA

Analyze mask

LenE(B13) = 8

LenE(B23) = 5

LenE(Aik×Bkj) = max(MAik, MBkj)

↦ 10 short exp and 8 long exp

Figure 4: An example of Ape. 𝐿𝑒𝑛𝐸 (𝑋) indicates maximum

length of exponent bits of all elements for given matrix 𝑋 .

emulated data types, for a given application, to better utilize the
computation capability of a DSA.

For a given computation 𝑂𝑝1, with an input 𝐴 of data type 𝑇1,
an input 𝐵 of data type 𝑇2, and an output 𝐶 of data type 𝑇3 (for
simplification, we assume any computation has two inputs and one
output), Ape will first partition input and output data into small
blocks, denoted by 𝐴𝑖 , 𝐵𝑖 , and𝐶𝑖 , respectively. It is guaranteed that
the input blocks are the computation dependency of the output
block, e.g., 𝐴𝑖 𝑂𝑝1 𝐵𝑖 is part of the computation of 𝐶𝑖 . Then Ape
will generate a mask matrix for each input recording the maximum
length of exponent bits for elements in each input block. Then,
the mask matrix will be further analyzed to guide the strategy
decision to select the most proper data type and the corresponding
computation from 𝐸𝑚𝑢𝑙𝑎𝑡𝑜𝑟 . Finally, Ape generates an optimized
code for computations on each block. In this example,Ape generates
a computation of 𝑂𝑝2,𝑖 with an input 𝐴𝑖 of data type 𝑇4, an input
𝐵𝑖 of data type 𝑇5, and an output 𝐶𝑖 of data type 𝑇6.

3.2 Example

To give a more concrete picture of how Ape works, we take a
GEMM computation as an example, as shown in Figure 4. Given a
GEMM computation 𝐶 = 𝐴 × 𝐵, we first partition data into several
small blocks. In this case, we suppose that Ape partitions 𝐴 into 6
(3 × 2) blocks, 𝐵 into 6 (2 × 3) blocks, and 𝐶 into 9 (3 × 3) blocks
correspondingly. Ape will analyze the input blocks and indicates
that at least one value that must be expressed with 8 exponent

Table 2: Representation Capability of different emulated data

types and their performance on NVIDIA A100 GPU.

Type Precision Exponent Sustained
Range Performance

Native FP32 23 bits [−126, +127] 17.28 TFLOPS

Previous FP32-M [29] N/A [−2, +15] 54.10 TFLOPS
Works EGEMM-TC [11] 21 bits [−2, +15] Unsupported

Ours
FP32-F 22 bits [−14, +15] 64.15 TFLOPS
FP32-T 22 bits [−114, +127] 18.94 TFLOPS
FP32-B 23 bits [−110, +127] 38.38 TFLOPS

1 pair <FP16 , FP16 > toFP32_F(FP32 A) {
2 FP16 Hi_A = FP16(A);
3 FP16 Lo_A = FP16(A - FP32(Hi_A));
4 return {Hi_A , Lo_A};
5 }

Listing 1: Represent an FP32 using two FP16s.

bits in 𝐴11, 𝐴22, and 𝐵13, while all the values in other input blocks
can be expressed with less than 5 exponent bits. Thus we generate
their corresponding mask matrices 𝑀𝐴 and 𝑀𝐵. Each element
of 𝑀𝐴 and 𝑀𝐵 indicates the minimum length of exponent bits
to be used for this block. Considering the computation pattern
of GEMM, each block in 𝐴, namely 𝐴𝑖𝑘 , will perform block-level
GEMM computations with certain blocks in 𝐵, namely 𝐵𝑘 𝑗 . After
analyzing the mask matrices, Ape decides that 8 out of the total 18
block-level GEMM computations should be computed in a data type
with long exponent bits, while the others can be computed with
short exponent bits. Finally, Ape generates the computation for this
case and selects a proper strategy to achieve higher performance.

4 EMULATING HIGH-BITWIDTH DATA TYPES

In this section, we illustrate our approach to emulating a high-
bitwidth data type with different low-bitwidth data types and ana-
lyze these emulated data types in detail. For each emulated data type,
after analyzing its representation precision, range, and computation
accuracy, we present two techniques to optimize the representation
method. One is to reduce the exponent gap of two elements by
shifting so as to make full use of exponent bits’ capability. The
other is to omit the computations that do not affect the result’s
precision. With these two optimizations, we can enlarge the data
representation range and achieve much higher performance.

To simply demonstrate our method, we choose three kinds of
widely supported half-precision data types, FP16, TF32, and BF16,
to emulate the commonly used single-precision FP32 data type. We
propose three emulated data types: FP32-F (Section 4.1), FP32-T
(Section 4.2), and FP32-B (Section 4.3). Table 2 shows the representa-
tion capability and sustained performance of the previous work and
ours. The BF16- and TF32-emulated data types are first proposed in
this work. Although FP16-emulated data type has been introduced
in previous works [11, 29], our emulation algorithm, FP32-F, has a
larger representation range and benefits from a 1.33× theoretical
speedup and 1.19× sustained speedup.

Moreover, in Section 4.4, we briefly discuss how our emulation
algorithm can be applied on emulating integer types.

Efficiently Emulating High-Bitwidth Computation with Low-Bitwidth Hardware ICS ’22, June 28–30, 2022, Virtual Event, USA

FP32

Sign Exponent Significand

Discarded HiE HiS R E LoS Discarded

FP32-F

Sign HiE HiS R LoE LoS

Figure 5: Emulation methods with FP32-F.

4.1 Emulating FP32 with FP16 (FP32-F)

The algorithm in Listing 1 describes the process of splitting an
FP32 into two FP16s, which are denoted by 𝐻𝑖 (higher field) and 𝐿𝑜
(lower field). Since one FP16 only has 5 bits for the exponent, while
FP32 includes 8 exponent bits, the highest 3 bits of FP32’s exponent
are discarded, and the remaining 5 bits are stored in 𝐻𝑖’s exponent
bits as 𝐻𝑖𝐸. This process is similar to previous work [29]. Next, by
analyzing numerical error, we can optimize the representation and
computation to achieve a much larger representation range and
higher performance.

Representation Precision Figure 5 shows the mapping of FP32 to
FP32-F. As for FP32’s 23 significand bits, they are split into several
parts as follows.

• The first 10 bits (𝐻𝑖𝑆) are stored in 𝐻𝑖’s significand bits.
• The 11th bit is called the rounding bit, denoted by 𝑅, and is
rounded to the 10th bit using round-to-nearest-even.

• The first bit after the rounding bit that equals 1 is treated as an
encoding bit, namely 𝐸, which can be implicitly encoded into
the significand bits of 𝐿𝑜 .

• The next 10 bits after the encoding bit are stored in 𝐿𝑜’s signifi-
cand bits, denoted by 𝐿𝑜𝑆 .

𝐿𝑜𝑆 can preserve all the trailing bits after the encoding bit if their
length does not exceed 10. Otherwise, i.e., there are 11 trailing bits,
the last bit of FP32’s significand bits is discarded. For simplicity, we
can assume the encoding bit is always the 12th significand bit of
FP32 in Figure 5, Figure 6, and for the rest of this section. In this
situation, where the 12th bit of an FP32’s significand is 1, its last
bit is discarded. Therefore, these two FP16s can only represent the
first 22 bits out of the 23 significand bits of the FP32 number. As a
result, the representation precision of FP32-F is 2−22, one bit less
than the precision of standard FP32.

Representation Range Exponent error occurs because FP16 only
has 5 bits for the exponent, so the highest 3 exponent bits in FP32
are truncated. Therefore, if an FP32’s exponent is larger than 15
or smaller than −14, it cannot be emulated with two FP16s. For
simplification, the representation range in this paper refers to the
range of the absolute value for a given type.

In FP32-F, the lower field 𝐿𝑜 represents the lower part of the
original FP32 number. Thus the exponent bits of 𝐿𝑜 , denoted by 𝐿𝑜𝐸,
equals𝐻𝑖𝐸 shifted by the index of encoding bit𝐸, i.e.,𝐿𝑜𝐸 = 𝐻𝑖𝐸−12
in the example of Figure 5. With this representation, the rounding
bit 𝑅 equals the sign bit of 𝐿𝑜 . When using FP32-F, an FP32 number
𝐴 is split into two parts, 𝐻𝑖_𝐴 and 𝐿𝑜_𝐴, each having a range of
[6.10 × 10−5, 6.55 × 104]. If we simply accumulate the results of
multiply computations as previous works did, to keep the 23-bit
precision, both 𝐻𝑖𝐴 and 𝐿𝑜𝐴 need to be in the range. This limits

1 1FP32_F_A

1 1FP32_F_B

1FP32

1HiS_A × HiS_B

1HiS_A × LoS_B

1LoS_A × LoS_B

1LoS_A × HiS_B

12 bits

24 bits

Figure 6: FP32-F multiplication and accumulation.

1 FP32 FMA(FP32 C, FP32 A, FP32 B) {
2 auto [Hi_A , Lo_A] = toFP32_F(A);
3 auto [Hi_B , Lo_B] = toFP32_F(B);
4 C += Hi_A * Hi_B;
5 C += Hi_A * Lo_B + Lo_A * Hi_B;
6 // C += Lo_A * Lo_B; (no effect on C)
7 return C;
8 }

Listing 2: Compute FMA with FP32-F.

the range of the original FP32 number to [0.25, 6.55 × 104]. As a
result, the lower bound of the representation range is too large.

To settle the problem, 𝐿𝑜_𝐴 is scaled up by 4096×, i.e., shifting
the exponent by 12 bits. Therefore, 𝐿𝑜_𝐴 can maintain the precision
of 𝐴 and an index equivalent to 𝐻𝑖_𝐴 at the same time. This patch
enlarges the range of FP32-F to [6.10 × 10−5, 6.55 × 104].

Computation Accuracy To demonstrate how Ape performs the
computation emulation, we take Fused Multiplication Addition
(FMA) computation as an example in this section.

Listing 2 shows how to multiply 2 FP32-F with the significand
bits correctly processed. We denote the multiplier and multiplicand
as 𝐴 and 𝐵. Their 𝐻𝑖𝑆 bits and 𝐿𝑜𝑆 bits, when emulated by FP32-F,
are denoted as 𝐻𝑖𝑆_𝐴, 𝐿𝑜𝑆_𝐴,𝐻𝑖𝑆_𝐵, and 𝐿𝑜𝑆_𝐵.

As shown in Figure 6, for each multiplication 𝐴 × 𝐵, four FP32-F
multiplications, 𝐻𝑖𝑆_𝐴 × 𝐻𝑖𝑆_𝐵, 𝐻𝑖𝑆_𝐴 × 𝐿𝑜𝑆_𝐵, 𝐿𝑜𝑆_𝐴 × 𝐻𝑖𝑆_𝐵,
and 𝐿𝑜𝑆_𝐴 × 𝐿𝑜𝑆_𝐵, should be performed. Then, the results of
these four FP16 multiplications are added together with shifting
indicated by 𝐿𝑜𝐸_𝐴 and 𝐿𝑜𝐸_𝐵. The result is the significand bits of
the original FP32 result. Note that only 23 bits are kept due to the
length of FP32’s significand bits.

The exponent of the FP32 equals the sum of 𝐻𝑖_𝐴’s exponent
and 𝐻𝑖_𝐵’s exponent, which is similar to the floating point multi-
plication, while only the lowest 5 bits of 𝐴 and 𝐵’s exponent bits
are kept. Note that as 𝐿𝑜_𝐴 × 𝐿𝑜_𝐵 is shifted by 12 + 12 bits, it
has no effect on the final FP32 result. Therefore this step can be
skipped to save computation and bring us 1.33× speedup compared
to previous works theoretically.

Since the result of multiplying two FP16s is stored in an FP32,
there is no overflow or underflow in the exponent bits of the result.
As the accumulation is directly performed on FP32 fragments, no
additional error is introduced by the emulated computation. The
last significand bit of a standard FP32 result might not be precise in
the result of FP32-F multiplication since the last significand bits of
the two multipliers may be discarded. As mentioned in Section 4.1,
the rest bits are precise, and the computation precision of FP32-F is
2−22.

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

1 tuple <BF16 , BF16 , BF16 > toFP32_B(FP32 A) {
2 BF16 Hi_A = BF16(A);
3 BF16 Mi_A = BF16(A - FP32(Hi_A));
4 BF16 Lo_A = BF16(A - FP32(Hi_A) - FP32(Mi_A))
5 return {Hi_A , Mi_A , Lo_A};
6 }

Listing 3: Represent an FP32 using three BF16s.

FP32

Sign Exponent Significand

HiE HiS MiS LoSR1 E1 R2 E2

LoE LoS DiscardedR2

FP32-B

HiE MiEHiS MiSR1Sign

Figure 7: Emulation methods with FP32-B.

4.2 Emulating FP32 with TF32 (FP32-T)

Emulating an FP32 using two TF32s is first proposed in this work.
The emulation is similar to that using two FP16s, with the only
exception that TF32 has 8 bits for the exponent (same as FP32) and
10 bits for significand (same as FP16). The 10-bit significand makes
the significand emulation of FP32-T the same as FP32-F. Similarly,
its precision is 2−22. Since TF32’s exponent is the same as FP32’s,
𝐿𝑜 does not need to be scaled. Therefore, FP32-T has a range of
[4.81 × 10−35, 3.40 × 1038].

4.3 Emulating FP32 with BF16 (FP32-B)

We first propose a method of emulating an FP32 using BF16s in this
work. Listing 3 shows the algorithm of this emulation. Still, the first
step is to split the FP32 into three BF16s, denoted by 𝐻𝑖 , 𝑀𝑖 , and
𝐿𝑜 , respectively.

Similar to FP32-F, the exponent bits of FP32 are stored in 𝐻𝑖’s
exponent bits. Since BF16 has 8 bits for the exponent, FP32’s expo-
nent bits can be fully preserved. For the significand bits, since BF16
only has 7 bits for significand, three BF16s are needed to emulate
one FP32.

Representation Precision Figure 7 shows the mapping of FP32 to
FP32-B. The basic concept is similar with FP32-F, listed as follows.
• The first 7 bits of FP32’s significand bits are stored in𝐻𝑖 , denoted
by 𝐻𝑖𝑆 .

• The 8th and 9th bits are rounding bit and encoding bit, denoted
by 𝑅1 and 𝐸1, respectively. (Similarly, we assume that the 9th bit
is 1.)

• The next 7 bits are stored in𝑀𝑖 , denoted by𝑀𝑖𝑆 .
• The next 2 bits are another rounding bit and another encoding
bit respectively, denoted by 𝑅2 and 𝐸2.

• The last 5 bits are stored in 𝐿𝑜 , denoted by 𝐿𝑜𝑆 .
Since all significand bits of FP32 are completely stored in FP32-B,

FP32-B has the same precision as FP32.

Representation Range As𝑀𝑖 and 𝐿𝑜 are not scaled, the represen-
tation of𝑀𝑖 and 𝐿𝑜 affects the range of FP32-B. As a result, FP32-B
has a representation range of [7.70 × 10−34, 3.40 × 1038].

1 FP32 FMA(FP32 C, FP32 A, FP32 B) {
2 auto [HiA , MiA , LoA] = toFP32_B(A);
3 auto [HiB , MiA , LoB] = toFP32_B(B);
4 C += Hi_A * Hi_B;
5 C += Hi_A * Mi_B + Mi_A * Hi_B;
6 C += Hi_A * Lo_B + Mi_A * Mi_B + Lo_A * Hi_B;
7 // C += Mi_A * Lo_B + Lo_A * Mi_B;
8 // C += Lo_A * Lo_B;
9 return C;
10 }

Listing 4: Compute FMA with FP32-B.

Computation Accuracy The FMA computation of FP32-B is sim-
ilar to that of FP32-F. Still, we only introduce how Ape emulates
the multiplication. Six multiplications, 𝐻𝑖_𝐴×𝐻𝑖_𝐵, 𝐻𝑖_𝐴×𝑀𝑖_𝐵,
𝑀𝑖_𝐴 × 𝐻𝑖_𝐵, 𝐻𝑖_𝐴 × 𝐿𝑜_𝐵, 𝐿𝑜_𝐴 × 𝐻𝑖_𝐵, and𝑀𝑖_𝐴 ×𝑀𝑖_𝐵, are
needed, as shown in Listing 4. The computation of𝑀𝑖_𝐴 × 𝐿𝑜_𝐵,
𝐿𝑜_𝐴 ×𝑀𝑖_𝐵, and 𝐿𝑜_𝐴 × 𝐿𝑜_𝐵, are skipped, because they do not
affect the result in precision, similar to 𝐿𝑜_𝐴 × 𝐿𝑜_𝐵 in FP32-F.

4.4 Emulating Integer Data Types

Since current DSAs support low-bitwidth integer types, including
INT8, INT4, and INT1 with INT32 accumulators, emulating high-
bitwidth integer data types with low-bitwidth data types is possible.
For example, we implement emulated INT16 with two INT8 on
NVIDIA Tesla A100 and Huawei Ascend 910A. Other integer types
are similar.

The emulation method of data representation and computation
is similar to floating-point data types. An INT16 is emulated by
directly splitting it into two INT8s by byte-order. But there are
some unique techniques in integers. To guarantee emulated inte-
ger data types can perform exactly the same as native data types,
computation of emulated INT16 requires four INT8 computations,
which we evaluate in Section 7.

5 ADAPTING APE TO REAL-WORLD

HARDWARE

Although Section 4 provides approaches to emulate high-bitwidth
data types with low-bitwidth data types, there still remain chal-
lenges when applying them on specific hardware.

The first challenge comes from the hardware constraints. The
theory in Section 4 guarantees the mathematical errors for differ-
ent emulation methods for element-wise computation. However,
for a real-world DSA, the computation resource is limited and the
computation granularity is not always element-wise. For example,
on NVIDIA Tensor Core, the input data and output data have dif-
ferent storage bitwidth, and the computation is taken with a fused
MMA instead of an FMA. Therefore, we need further analysis when
applying the emulation methods to specific hardware, which will
be detailed in Section 5.1.

The second challenge is how to achieve higher performance
while also guaranteeing computation correctness. As shown in Ta-
ble 2, different emulation methods have various performance and
representation capabilities. Although FP32-F has the best perfor-
mance, it may introduce overflow or underflow as it has a narrow
representation range. Considering the real-world matrix data often

Efficiently Emulating High-Bitwidth Computation with Low-Bitwidth Hardware ICS ’22, June 28–30, 2022, Virtual Event, USA

contain over thousands of elements and have disparate data patterns
which can only be determined at runtime, choosing the correct yet
highly efficient data types while preventing large runtime overhead
is challenging. To address this, we propose a fine-granularity block-
wise approach that enables hybrid emulation methods for a given
computation (Section 5.2) and design a lightweight performance-
model-based strategy decider to minimize the runtime overhead
(Section 5.3).

5.1 Data Correctness under Hardware

Constraints

For a specific operator, the numerical correctness is related to the
computation patterns. In a real-world DSA, the computation is a
fused computation that contains many steps. Taking GEMM for
example, several multiplications are performed, and their results
are summed up as the output. In this process, overflow may occur
in every step, which affects the correctness. Note that a register,
formally the accumulator, is used to store the partial sum of the
multiplication results, which may be in a different data type from
the input. Therefore, in the design of the adapter, the architecture
of the target DSA needs to be carefully inspected and considered.

Taking Tensor Core for example, by examining the precision and
range of MMA instruction, we find the following useful features.
• When using FP32 as the accumulator in an FP16 or BF16 matrix-
multiplication, the result has the same accuracy as FP32 compu-
tation. In other words, it is exactly as the results of the original
inputs.

• The accumulator of Tensor Core accumulates the result of mul-
tiplications and performs rounding in every MMA instruction.
The rounding method is round-to-zero.
We can find that assuming that GEMM computation does not

overflow or underflow FP32, no overflow or underflow will occur
during the emulated computation. The rounding method of MMA
instruction is different from FMA instruction on CUDA Core. That
means the result on Tensor Core is not exactly the same as on CUDA
Core, but both of them are correct numerically. Therefore, we can
conclude that the emulation method of Ape can be implemented
to such hardware whose accumulator supports at least the same
bitwidth with the high-bitwidth data type.

Based on these facts, we can select the appropriate exponent by
checking the range of the input matrix for GEMM computation.
Therefore, we can potentially mine the dynamicity of the input
data. We design an adapter that scans each input matrix for each
GEMM computation and selects the proper data types.

5.2 Block-Wise Hybrid Computation

As mentioned in Table 2, there is a huge gap in performance be-
tween different types with similar precision. Taking GEMM on
Tensor Core on NVIDIA A100 as an example, with matrices sized
1024 × 1024, FP32-F achieves 27.24 TFLOPS, while FP32-B can only
achieve 17.20 TFLOPS, 63.1% the throughput of the former. Intu-
itively, to achieve higher throughput, FP32-F should be used as
much as possible. However, the use of FP32-B is unavoidable when
there are computations that require more exponent bits.

Moreover, data patterns typically vary in different areas of data.
To mine such patterns, we propose a block-wise algorithm. We

1 type_t getMask(Partition P) {
2 type_t mask = FP32_F;
3 for (auto v : P) {
4 if (v < MIN_FP32_B || v > MAX_FP32_B)
5 return FP32;
6 if (v < MIN_FP32_F || v > MAX_FP32_F)
7 mask = FP32_B;
8 }
9 return mask;
10 }

Listing 5: Generate the mask for a partition.

firstly partition the data into blocks according to the computation
granularity of hardware. Then, by analyzing the data and computa-
tion dependency, we can determine the data type with the highest
possible performance for each input block. In this way, we use
different data types for different blocks within one computation for
higher performance.

After partitioning, the process of analyzing the input data is
shown in Listing 5. By checking each element in a partition, the
related computation process is analyzed to find the most suitable
type that can meet the needs of exponent bit length in the parti-
tion. For example, in our GEMM implementation on Tensor Core,
after partitioning, a GPU kernel is used to scan each element in
each partition and select the representation method with the best
performance and sufficient capability. Afterward, statistics on the
entire partitions are summarized to determine the most suitable
data type for this partition, which is named as mask.

In this example, FP32-F and FP32-B are candidate types. For a
given binary operator 𝐶 = op(𝐴, 𝐵), where 𝐴, 𝐵, and 𝐶 are blocks,
FP32-F, which has higher performance, can only be used when both
𝐴 and 𝐵 can be represented by FP32-F. Otherwise, FP32-B must be
used.

Therefore, the computation is split into two parts. The blocks
that must use FP32-B and the rest part are separately computed by
two different kernels. The decision of the two kernels only involves
looking up two labels. Thus, it can be made during runtime before
starting the actual computation without introducing significant
overhead.

As a result, Ape benefits from simultaneously using different
types to balance capability and performance.

5.3 Light-Weight Strategy Decider

As mentioned in Section 5.1, by analyzing the data mask, a list of
candidate types for computation is given. The most performant
case is that all data can be represented by FP32-F, where FP32-F is
directly used for computing. On the contrary, if the input data can
only be represented by native FP32, we have to roll back to CUDA
Core, leading to poor performance. In more common cases, part
of the input data can be represented by FP32-F and the others by
FP32-B. The block-wise hybrid computation method, as mentioned
in Section 5.2, is utilized. But the hybrid method is not always the
optimal choice. To clearly demonstrate this scene, we take a hybrid
of FP32-F and FP32-B as an example to show the performance of
FP32-F, FP32-B, and the hybrid approach. The result is shown in
Figure 8. We can observe that the best data type changes with
the growth of the proportion of FP32-B blocks. Thus, an online

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

0% 20% 40% 60% 80% 100%
The Proportion of FP32-B Blocks

0

10

20

30

Pe
rf

. (
TF

LO
PS

)

Hybrid FP32-F FP32-B

Figure 8: GEMM performance with different proportion of

FP32-B blocks.

algorithm should be designed to determine the proper data type
for each computation.

To lower the latency needed by making the decision online, a
light-weight decision algorithm is developed. A performance model
is built to predict the running time of GEMM computation using
either dedicated FP32-B or block-wise hybrid-type computation
method.

The model is based on the data mask. For simplicity, we assume
that the scheduling method and load balance during the computa-
tion is ideal. For each block𝐶𝑖, 𝑗,𝑘 , the data type used in computation
is determined according to 𝐴𝑖,𝑘 and 𝐵𝑘,𝑗 . When any input block is
FP32-B, both computing blocks must use FP32-B. Otherwise, both
of the input blocks are FP32-F, and the computing block can use
FP32-F. Therefore, the number of blocks corresponding to each
type is counted using the following algorithm. First, encode FP32-F
and FP32-B in the data mask as 0 and 1, respectively. Then, a small
GEMM𝑚𝑎𝑠𝑘𝐶 =𝑚𝑎𝑠𝑘𝐴 ×𝑚𝑎𝑠𝑘𝐵 is performed. Here, each element
𝑚𝑎𝑠𝑘𝐶 represents the number of blocks that can use FP32-F in the
output matrix. Finally, all elements in 𝑚𝑎𝑠𝑘𝐶 are summed up to
obtain the number of FP32-F computing blocks in the computing
process.

By sampling the performance of blocks with each data type,
we can calculate the time for a given computation. Therefore, we
predict the running time of using dedicated FP32-F, FP32-B, or
hybrid-computing and select the best.

6 IMPLEMENTATION

We implement the full-functional Ape on NVIDIA Tensor Core
GPUs, including Tesla V100, T4, and A100. Since we do not have
open access to program on Huawei Ascend processors, we do not
implement the block-wise hybrid computation on Ascend. Instead,
we use wrapped kernels like GEMM and Convolution provided
by vendors to verify our approach on Ascend. Although existing
libraries like cuBLAS [30] provide highly optimized kernels, it is not
sufficient enough to support all of Ape’s functions. For example, we
need to implement kernels for different types with a fine-grained
schedule to support our hybrid method. Furthermore, as Ape sup-
ports different platforms, we proposed a code generator to generate
different kernels with various configurations and choose the best
for each platform.

For example, on Tensor Core, the kernel should overlap the com-
putation and memory access to fill the computation throughput.

QS PCA kNN kMeans BERT
0.0x

0.5x

1.0x

1.5x

2.0x

Sp
ee
du
p

Baseline APE

Figure 9: Applications speedup over CUDA Core FP32.

The pipeline should be carefully designed. Moreover, data casting
can be put inside or outside a kernel. The better approach depends
on the emulated types and the platforms. We implement certain
code templates which describe several implementations, includ-
ing using wrapped kernels or using kernels with different pipeline
strategies. The code generator will generate various kernels accord-
ing to the templates. Ape will choose the most performant kernel
for each situation on each platform.

Ape provides users a similar interface to other BLAS [3] libraries
and currently supports two linear operations, GEMM and convolu-
tion. Users can easily use Ape by replacing the original library calls
of GEMM and convolution with Ape’s library calls by modifying
either the code or the library linking, without modifying the rest of
the application. If the users have expert knowledge about the data
range and precision, they can also manually choose the kernel of a
certain data type for further optimization.

7 EVALUATION

7.1 Experiment Setup

We evaluate Ape on NVIDIA GPUs and Huawei Ascend AI proces-
sors, respectively. For NVIDIA GPUs, the evaluation is performed
on NVIDIA Tesla V100, T4, and A100. The CUDA version is unified
to 11.0.2, and the memory and application clock rates of the GPUs
are fixed at maximum to avoid performance variance. For Huawei
Ascend processors, the evaluation is on Ascend 910A, which has a
peak performance of 256 TFLOPS on FP16 and 512 TOPS on INT8.
Unless otherwise stated, all the evaluation includes the overhead
of emulation and adaptation.

7.2 End-to-End Performance

We use five applications to evaluate the performance of Ape on
NVIDIA GPUs. Baselines of all the applications are those imple-
mented with GEMM in cuBLAS (either initially using cuBLAS or
adapted by us) on CUDA Core. As illustrated in Section 6, we only
replace GEMM library from cuBLAS to Ape, and the rest of the
applications remain unchanged. The results are shown in Figure 9.

Quantum circuit simulation (QS) can be implementedwithGEMM
and tensor transpose [39]. With the maximum matrix size being
512, the average speedup of Ape is 1.65×.

Principal component analysis (PCA) [19] is used for exploratory
data analysis, and the most computationally intensive operations
in it are GEMM and EIG (eigenvalues). Our implementation of PCA
is based on cuBLAS and cuSolver on GPU. Ape can accelerate PCA

Efficiently Emulating High-Bitwidth Computation with Low-Bitwidth Hardware ICS ’22, June 28–30, 2022, Virtual Event, USA

1024 2048 4096 8192 16384
Matrix Size

0

20

40

Pe
rf

. (
TF

LO
PS

) NVIDIA Tesla V100

1024 2048 4096 8192 16384
Matrix Size

0

10

20

Pe
rf

. (
TF

LO
PS

) NVIDIA Tesla T4

1024 2048 4096 8192 16384
Matrix Size

0

50

Pe
rf

. (
TF

LO
PS

) NVIDIA Tesla A100

FP32 FP32-M EGEMM-TC FP32-F FP32-T FP32-B

Figure 10: Emulation performance of floating-point data types on NVIDIA GPUs.

by 1.19×, where GEMM takes 39.25% of the total execution time in
the original version.

K-Nearest Neighbors (kNN) [2, 13] is a classic algorithm for
classification and regression. The inputs are training examples in
a feature space. The most computationally intensive operation in
kNN is a GEMM. The baseline approach is an open-source kNN
implementation on GPU [14]. In the cuBLAS version, GEMM takes
76.9% of the execution time, and Ape can provide a speedup of
1.78× for kNN.

K-means clustering (kMeans) [28] is a method that partition
𝑛 samples into 𝑘 clusters, in which each example belongs to the
cluster with the nearest mean. We adopt an open-source kMeans
implementation on GPU from NVIDIA [31] as the baseline. GEMM
accounts for 77.2% of running time in kMeans, and the speedup of
Ape is 1.75×.

Bidirectional Encoder Representations from Transformers
(BERT) [8] is a Transformer model widely used for natural language
processing. GEMM is the most time-consuming computation in
BERT. We applied Ape on an open source BERT implementation
cuBERT [10]. When evaluating BERT with single precision, FP32-F
can achieve up to 1.77× speedup.

7.3 GEMM Performance

Floating-PointWe evaluate different floating-point emulations on
NVIDIA GPUs, including NVIDIA Tesla V100, T4, and A100. The
results are shown in Figure 10. The baselines are GEMM on CUDA
Core in cuBLAS and previous approaches on Tensor Core, including
Markidis et al.’s work [29] denoted as FP32-M, and EGEMM-TC [11].
We reproduce FP32-M following their paper. Since EGEMM-TC is
not open-source and uses SASS assembly-style instructions dedi-
cated to Turing architecture, we only comparewith the performance
metrics reported by EGEMM-TC’s paper on Tesla T4. All the eval-
uation of the performance of Ape on GPU includes the time for
pre-processing and post-processing.

On A100, FP32-F and FP32-B have both significantly higher
performance than cuBLAS FP32 approach with 3.12× and 1.85×
speedups, respectively. Compared to previous approach, FP32-F
provides better data ranges, and meanwhile, FP32-F can still out-
performs FP32-M by 1.22×.

On V100 and T4, Ape only enables FP32-F since V100 and T4
do not support BF16 or TF32 on Tensor Core. On these platforms,
FP32-F can optimize cuBLAS FP32 in most cases by 1.81× and
1.49× respectively. Ape consistently outperforms FP32-M by 1.29×

1024 2048 4096 8192 16384
Matrix Size

0

40

80

120

Pe
rf

. (
TF

LO
PS

) NVIDIA Tesla A100

1024 2048 4096 8192 16384
Matrix Size

0

20

40

60

Pe
rf

. (
TF

LO
PS

) Huawei Ascend 910A

Figure 11: Emulation performance of fixed-point data types

on Tesla A100 and Ascend 910A.

0 1 2 3 4 5 6 7
Convolution Kernels

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

Baseline APE

Figure 12: Performance of convolution on Tesla A100.

on V100 and 1.23× on T4. Compared to EGEMM-TC on T4, Ape
achieves better performance on small matrices but worse on matri-
ces larger than 4096 because T4 provides lower memory bandwidth
than V100 and A100, which requires carefully tuning on memory
accesses. EGEMM-TC utilizes SASS assembly-style instructions to
optimize its performance. However, since SASS is not portable on
different microarchitectures, it cannot be easily ported to other
GPUs. Interestingly, due to the low memory access bandwidth of
T4, the split operations take a large part of the time (e.g., 17.5%
when 𝑁 = 2048), so the splitting overhead cannot be ignored and
brings challenges to code generation.

Fixed-PointWe evaluate fixed-point emulations on different ac-
celerators, including Tensor Core on NVIDIA Tesla A100 GPU
and Huawei Ascend 910A processor. We use two INT8 fixed-point
numbers to emulate one INT16, which is not supported on either
NVIDIA GPU or Ascend processor. The evaluation shows that with
Ape’s emulation, the accelerators can support computations on
non-native data types. The performance of emulated INT16 fixed-
point GEMM computation is shown in Figure 11. The running time
excludes the data casting time.

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

0 1 2 3 4 5 6 7 8
0

1e-6
1e-5
1e-4
1e-3
1e-2
1e-1

1

M
ax

 R
el

at
iv

e
Er

ro
r

FP32 FP32-F FP32-B FP16

Figure 13: Maximum error of quantum simulation. IDs on

x-axis represent different circuits.

2^
-12

5
2^

-10
0

2^
-75

2^
-50

2^
-25 2^

0
2^

25
2^

50
2^

75
2^

10
0

2^
12

5

Data Range

0

1e-6

1e-4

1e-2

1

M
ax

 R
el

at
iv

e
Er

ro
r

FP32-M FP32-F FP32-T FP32-B

Figure 14: Maximum errors of different emulation types.

7.4 Convolution Performance

To verify the correctness of Ape in other linear computations, we
evaluate convolution with FP32-F and FP32 on NVIDIA Tesla A100.
In this experiment, both approach are based on cuDNN [4]. FP32-F
performs with Tensor Core and FP32 performs with CUDA Core.
We choose several convolutions in ResNet-18. The result is shown
in Figure 12. In some cases, FP32-F can achieve higher performance
than FP32, which shows Ape can not only support convolution
on Tensor Core but potentially optimize convolution with cuDNN
implementation. Although convolution with cuDNN is not a di-
rect hardware implementation, this experiment verifies that Ape’s
method can be performed on convolution and expanded to convo-
lution DSAs.

7.5 Accuracy

Application Accuracy To evaluate accuracy in real applications
when using Ape, we take QS as a case study. QS has a numerical
output that can be easily compared with the FP64 result. As a result,
QS can intuitively reflect the accuracy loss of Ape under different
datatype configurations. As shown in Figure 13, compared with
the result of FP64, the errors of FP32-F and FP32-B are equivalent
to FP32. However, directly using FP16 will cause obvious errors in
most cases. For example, in the circuit of 𝐼𝑆𝐼𝑁𝐺_25(#4), the error of
FP32-F, FP32-B, and FP32 is all about 9%, while the error of FP16 is
172%. Therefore, the emulation method provided by Ape can meet
the requirements of quantum simulation while FP16 cannot.

Emulation Accuracy In order to verify the emulation precision
of Ape, we generate multiple sets of data and compare the accu-
racy loss of emulated types. The result is shown in Figure 14. The

1024 2048 4096 8192 16384
Matrix Size

0

5e-5

1e-4

1.5e-5

M
ax

 R
el

at
iv

e
Er

ro
r

FP32-M FP32-F FP32-B FP32-T

Figure 15: Maximum error of GEMM operator.

1024 2048 4096 8192 16384
Matrix Size

0%

25%

50%

75%

100%

Ex
ec

. T
im

e
(%

)

FP32-B FP32-F Overhead

Figure 16: Computation time break-down analysis of the

hybrid emulation method.

point corresponding to the abscissa x represents the error of 16384
numbers generated randomly and uniformly in (𝑥, 2𝑥).

Among them, FP32-F and FP32-M have a stable error in the
representation range of about 1.2 × 10−7, which is equivalent to
the previous theoretical analysis. However, compared with FP32-M
emulation, FP32-F has a larger data range without much accuracy
loss. The accuracy of FP32-M decreases when the data value is less
than 0.25, and the accuracy of FP32-F decreases when the data value
is below 6.1 × 10−5.

The FP32-B and FP32-T have a data range close to FP32, while
FP32-B has almost no error within its range compared to FP32.
FP32-T has a relative error of about 1.2×10−7 within its range. This
means that FP32-B and FP32-T have similar precision and range
compared to FP32.

Computing Accuracy The accuracy of the emulation method
in computation is inspected by performing GEMM operator on
random matrices of different sizes. The maximum relative error is
reported in Figure 15.

An observation is that error increases with matrix size in all em-
ulation methods. This is because the truncation method of Tensor
Core is round-to-zero rather than round-to-nearest. Therefore, trun-
cation errors are accumulated during reductions, leading to that
errors would grow as data range increases. However, round-to-zero
is a hardware design choice of Tensor Core, and it is not brought
from emulations.

Another interesting problem is that different kernels have dif-
ferent errors. Ape will choose a proper kernel to achieve better
performance on each size. Therefore, the errors caused by the algo-
rithm will vary with the matrix size. The kernel of 16384 is different
from the kernel of 8192. So there are obviously different errors
between these kernels.

Efficiently Emulating High-Bitwidth Computation with Low-Bitwidth Hardware ICS ’22, June 28–30, 2022, Virtual Event, USA

7.6 Breakdown

The performance of the hybrid emulation method is analyzed by
breaking down the computation time of performing GEMM on
input matrices where 60% of the blocks are emulated by FP32-F and
the rest emulated by FP32-B. The result of different input matrix
sizes is shown in Figure 16. FP32-F, FP32-B, and Overhead represent
their running time. Overhead contains the time to inspect the range
for each input element and the time to determine the label for each
block.

The result shows that making fine-grained decisions between
emulation methods for each block costs negligible time compared
to the time spent on the actual GEMM computation. Much time is
saved by utilizing FP32-F with the decision strategy as we expected.
In brief, the adapter introduces little overhead and effectively im-
proves the performance.

8 DISCUSSION

The methodology of Ape can support different linear computa-
tion based on Fused Multiplication-Accumu-lation (FMA), such as
GEMM and convolution, which play essential roles across different
domains, including AI and HPC. In this paper, we mainly evaluate
Ape on NVIDIA Tensor Core GPUs and Ascend accelerators. But
as mentioned in Section 5, Ape can be implemented on all the hard-
ware that meets certain requirements. Ape is not only limited to
the computation and hardware evaluated in this paper, but also can
potentially support new hardware designed for other FMA-based
linear computations.

Meanwhile, Ape shows that we can use low-bitwidth data types
to emulate high-bitwidth data types without losing much accuracy
or hurting the correctness, which can shed some light on hardware
design. For example, if an FP64 accumulator is provided for an FP16
computing unit, Ape can also be used to emulate FP64 computation.
Therefore, we can use the same FP16 computing unit to emulate
FP32 and FP64 data types, thereby saving hardware on-chip area,
which is a significant bottleneck in chip design.

9 CONCLUSION

In this work, we present Ape, which is the first framework that
provides various emulated data types on DSAs and automatically
selects proper data types. Ape can accelerate a given computa-
tion with fine-granularity to achieve higher performance while
maintaining correctness and precision. Ape extends computation
scenarios for better utilization of DSAs without any human efforts.
We implement Ape on both NVIDIA Tensor Core and Huawei As-
cend. The evaluation shows thatApe can boost FP32 General Matrix
Multiplication and convolution by up to 3.12× and 1.86× on Tensor
Core compared with CUDA Core, and optimize various applications
by up to 1.78× (1.61× on average).

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments and suggestions. This work is supported by the National
Key R&D Program of China under Grant 2021ZD0110104, the Na-
tional Natural Science Foundation of China (U20A20226), and the
Beijing Natural Science Foundation (4202031). Jidong Zhai is the
corresponding author of this paper.

REFERENCES

[1] 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008),
1–70. https://doi.org/10.1109/IEEESTD.2008.4610935

[2] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician 46, 3 (1992), 175–185.

[3] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry,
et al. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM
Trans. Math. Software 28, 2 (2002), 135–151.

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[5] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-Point Mixed-
Precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages (Paris, France) (POPL 2017). Association for
Computing Machinery, New York, NY, USA, 300–315. https://doi.org/10.1145/
3009837.3009846

[6] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy, and
Pavel Panchekha. 2020. Scalable yet Rigorous Floating-Point Error Analysis.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article
51, 14 pages.

[7] Theodorus Jozef Dekker. 1971. A floating-point technique for extending the
available precision. Numer. Math. 18, 3 (1971), 224–242.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997. TOP500 super-
computer sites. Supercomputer 13 (1997), 89–111.

[10] Liwen Fan, Ruixin Wang, Kuan Fang, and Xian Sun. 2019. cuBERT. https:
//github.com/zhihu/cuBERT.

[11] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie, and Yufei
Ding. 2021. EGEMM-TC: accelerating scientific computing on tensor cores with
extended precision. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 278–291.

[12] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. 2021. Apnn-tc:
Accelerating arbitrary precision neural networks on ampere gpu tensor cores.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–13.

[13] Evelyn Fix. 1951. Discriminatory analysis: nonparametric discrimination, consis-
tency properties. USAF School of Aviation Medicine.

[14] Vincent Garcia, Eric Debreuve, and Michel Barlaud. 2008. Fast k nearest neighbor
search using GPU. In 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops. IEEE, 1–6.

[15] Google. 2020. Advanced neural network processing for low-power devices.
https://coral.ai/technology

[16] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019.
Compiling KB-SizedMachine LearningModels to Tiny IoTDevices. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing
Machinery, New York, NY, USA, 79–95. https://doi.org/10.1145/3314221.3314597

[17] Huawei. 2022. Ascend to Pervasive Intelligence. https://e.huawei.com/en/
products/servers/ascend

[18] Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-point feedforward deep neural
network design using weights+ 1, 0, and- 1. In 2014 IEEE Workshop on Signal
Processing Systems (SiPS). IEEE, 1–6.

[19] J Edward Jackson. 2005. A user’s guide to principal components. Vol. 587. John
Wiley & Sons.

[20] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. 2019.
Dissecting the graphcore ipu architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413 (2019).

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture. 1–12.

[22] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, Raquel Urtasun, and Andreas Moshovos. 2015. Reduced-precision strate-
gies for bounded memory in deep neural nets. arXiv preprint arXiv:1511.05236
(2015).

[23] Paresh Kharya. 2020. TensorFloat-32 in the A100 GPU Accelerates AI Training,
HPC up to 20x. the NVIDIA Blog (2020).

[24] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2017. Deep convolutional
neural network inference with floating-point weights and fixed-point activations.
arXiv preprint arXiv:1703.03073 (2017).

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/3009837.3009846
https://github.com/zhihu/cuBERT
https://github.com/zhihu/cuBERT
https://coral.ai/technology
https://doi.org/10.1145/3314221.3314597
https://e.huawei.com/en/products/servers/ascend
https://e.huawei.com/en/products/servers/ascend

ICS ’22, June 28–30, 2022, Virtual Event, USA Ma et al.

[25] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing
Hu. 2021. Ascend: a Scalable and Unified Architecture for Ubiquitous Deep
Neural Network Computing: Industry Track Paper. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 789–801.

[26] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quan-
tization of deep convolutional networks. In International conference on machine
learning. PMLR, 2849–2858.

[27] Seppo Linnainmaa. 1981. Software for doubled-precision floating-point computa-
tions. ACM Transactions on Mathematical Software (TOMS) 7, 3 (1981), 272–283.

[28] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[29] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. Nvidia tensor core programmability, performance & precision. In
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 522–531.

[30] NVIDIA. [n.d.]. cuBLAS. https://developer.nvidia.com/cublas.
[31] NVIDIA. 2013. NVIDIA/kmeans. https://github.com/NVIDIA/kmeans.
[32] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture. UNPRECEDENTED

ACCELERATION AT EVERY SCALE. Version v1.0. NVIDIA (2020).
[33] Tesla NVIDIA. 2017. V100 GPU architecture. the world’s most advanced data

center GPU. Version WP-08608-001_v1.1. NVIDIA. Aug (2017).

[34] Zhixiang Ren, Yongheng Liu, Tianhui Shi, Lei Xie, Yue Zhou, Jidong Zhai, Youhui
Zhang, Yunquan Zhang, and Wenguang Chen. 2021. AIPerf: Automated machine
learning as an AI-HPC benchmark. Big Data Mining and Analytics 4, 3 (2021),
208–220.

[35] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir
Rakamarić, and Ganesh Gopalakrishnan. 2018. Rigorous estimation of floating-
point round-off errors with symbolic taylor expansions. ACM Transactions on
Programming Languages and Systems (TOPLAS) 41, 1 (2018), 1–39.

[36] Andrew Thall. 2006. Extended-precision floating-point numbers for GPU com-
putation. In ACM SIGGRAPH 2006 research posters. 52–es.

[37] Sudharshan S Vazhkudai, Bronis R De Supinski, Arthur S Bland, Al Geist, James
Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley, Sarp Oral, Don EMaxwell,
et al. 2018. The design, deployment, and evaluation of the CORAL pre-exascale
systems. In SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE, 661–672.

[38] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: the secret to high performance
on cloud TPUs. Google Cloud Blog (2019).

[39] Chen Zhang, Zeyu Song, Haojie Wang, Kaiyuan Rong, and Jidong Zhai. 2021.
HyQuas: hybrid partitioner based quantum circuit simulation system on GPU. In
Proceedings of the ACM International Conference on Supercomputing. 443–454.

https://developer.nvidia.com/cublas
https://github.com/NVIDIA/kmeans

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Domain-Specific Accelerator
	2.2 Low-Bitwidth Data Types
	2.3 Related Work

	3 Overview of Ape
	3.1 Ape Framework
	3.2 Example

	4 Emulating High-Bitwidth Data Types
	4.1 Emulating FP32 with FP16 (FP32-F)
	4.2 Emulating FP32 with TF32 (FP32-T)
	4.3 Emulating FP32 with BF16 (FP32-B)
	4.4 Emulating Integer Data Types

	5 Adapting Ape to Real-World Hardware
	5.1 Data Correctness under Hardware Constraints
	5.2 Block-Wise Hybrid Computation
	5.3 Light-Weight Strategy Decider

	6 Implementation
	7 Evaluation
	7.1 Experiment Setup
	7.2 End-to-End Performance
	7.3 GEMM Performance
	7.4 Convolution Performance
	7.5 Accuracy
	7.6 Breakdown

	8 Discussion
	9 Conclusion
	Acknowledgments
	References

