
FreeTensor: A Free-Form DSL with Holistic
Optimizations for Irregular Tensor Programs

Shizhi Tang
Tsinghua University

Beijing, China

tsz19@mails.tsinghua.edu.cn

Jidong Zhai∗

Tsinghua University

Beijing, China

zhaijidong@tsinghua.edu.cn

Haojie Wang
Tsinghua University

Beijing, China

wanghaojie@tsinghua.edu.cn

Lin Jiang
Tsinghua University

Beijing, China

jiangl17@mails.tsinghua.edu.cn

Liyan Zheng
Tsinghua University

Beijing, China

zhengly20@mails.tsinghua.edu.cn

Zhenhao Yuan
Tsinghua University

Beijing, China

yuanzh20@mails.tsinghua.edu.cn

Chen Zhang
Tsinghua University

Beijing, China

zhang-c21@mails.tsinghua.edu.cn

Abstract

Tensor programs are of critical use in many domains. Ex-

isting frameworks, such as PyTorch, TensorFlow, and JAX,

adopt operator-based programming to ease programming,

increase performance, and perform automatic differentia-

tion. However, as the rapid development of tensor programs,

operator-based programming shows significant limitations

for irregular patterns since a large amount of redundant

computation or memory access is introduced.

In this work, we propose FreeTensor, a free-form domain

specific language which supports redundancy-avoid pro-

gramming by introducing fine-grained control flow. With op-

timizations including partial evaluation, dependence-aware

transformations, and fine-grained automatic differentiation,

FreeTensor is able to generate high performance tensor pro-

grams on both CPU and GPU. Experiments show a speedup

over existing tensor programming frameworks up to 5.10×

(2.08× on average) without differentiation, and up to 127.74×

(36.26× on average) after differentiation, for typical irregular

tensor programs.

CCS Concepts: • Computing methodologies → Parallel

programming languages; • Software and its engineering

→ Source code generation.

∗Corresponding author.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523448

Keywords: tensor computing, optimizing compilers, DSL

ACM Reference Format:

Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng,

Zhenhao Yuan, and Chen Zhang. 2022. FreeTensor: A Free-Form

DSL with Holistic Optimizations for Irregular Tensor Programs.

In Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI ’22),

June 13ś17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3519939.3523448

1 Introduction

Tensor programs are widely used across different domains

including deep learning, computer graphics, scientific com-

puting, and so on. Optimizing tensor programs is critical

as tensor programs often operate on thousands of elements

requiring massive parallelism to achieve high performance.

However, such optimizations across various architectures

require not only significant human efforts but also expertise

on both algorithms and architectures.

Most of existing tensor programming frameworks, like

PyTorch [29], TensorFlow [3], and JAX [17], encapsulate

typical tensor computations into operators, such as matrix

multiplication and convolution. In these frameworks, oper-

ators are highly optimized by hand for high performance

and provided to users through libraries like cuDNN [15],

cuBLAS [16] or Intel MKL [26].

Such operator-based frameworks can cover common ten-

sor programs on certain hardware, but there are still signifi-

cant performance challenges remaining unsolved. As most

optimizations are done inside operators, traditionally, users

are required to apply an operator to all elements in a ten-

sor and chain multiple operators to implement a program.

However, as the size of models grows larger, recent models

tend to compute on part of a tensor to save computation.

To express such models with operator-based frameworks,

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.

872

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523448
https://doi.org/10.1145/3519939.3523448
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523448&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang
sl

id
in

g
 w

in
d

o
w a

b

c

d

e

f

x T

𝑓𝑒𝑎𝑡_𝑙𝑒𝑛

Q K

bx cx dx

dot

(summation)
sliding window

(a) Longformer computation

pad(Q).as_strided K

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

x T

(b) Operator-based implementation

Q_strided = pad(Q, ...).as_strided(...)

dot = einsum(..., Q_strided, K)

(c) PyTorch implementation of Longformer

Figure 1. Partial attention implementation in Longformer.

tensors need to be transformed back and forth and a large

amount of redundant computation or memory copies are

introduced.

We take Longformer model [8] as an example, as shown in

Figure 1(a). Different from traditional attention computing

correlations for all tokens, Longformer computes correla-

tions for pairs of nearby tokens that have a distance no

greater than a threshold, thus it is capable to process much

longer sequences. The range of the nearby tokens can be

viewed as a sliding window. One common implementation

on typical operator-based frameworks is to first pad and

copy feature matrix Q along the sliding window, as shown

in Figure 1(b), and the corresponding code is shown in Fig-

ure 1(c). As tensor Q is copied sliding-window-size-folded,

significant memory redundancy is introduced.

Such types of tensor programs are increasingly common

in emerging deep learning models. For simplicity, we call

them irregular tensor programs. Compared with common

tensor programs, such programs usually have the following

features: 1) Fine-grained operations. The data required,

used, and reused are not in a whole-tensor level, but de-

termined by context. 2) Combination of multiple opera-

tions. These tensor programs usually need a series of oper-

ations to achieve corresponding functions. Multiple tensor

operations should be combined.

Although users can use customized operators in operator-

based frameworks, current frameworks only provide limited

expressiveness to support irregular tensor programs. For ex-

ample, vmap in JAX and PyTorch supports iterating through

a tensor and applies operations to each part of it, but the

iteration should be dependence-free. TVM [12] is fully built

on top of customized operators, but each operator is limited

to perfectly nested loops, with dependence-free loops on

the outer side, and reduction loops on the inner side. Due

to these limitations, users still have to introduce redundant

operators.

In practice, when it is difficult to express a tensor program

with an operator-based framework, users can still express

the computation of part or whole of it in a general-purpose

programming language, such as Python and C++. The main

reason is that fine-grained control flow in such languages

can easily remove the redundancy. In this work, we call such

a program a free-form tensor program. However, such

a program cannot achieve satisfying performance without

careful optimizations, which require significant human ef-

forts and expertise. Architecture-specific optimizations, such

as parallelization and explicit utilization of cache or scratch-

pad memory, have to be done manually for every hardware

backend. Moreover, automatic differentiation (AD), which

is desired in typical tensor applications, exacerbates this

problem. The original program and its gradient should be

implemented separately. General-purpose programming lan-

guages such as Julia [9] provide an easy way to interact

with tensors and compute gradients. However, performing

optimizations on them is still a difficult task.

To address this challenge, we propose FreeTensor, a redun-

dancy-avoid domain-specific language (DSL) for tensor pro-

grams. Different from existing works, we introduce fine-

grained tensor operations to reduce redundant computation

and memory access while keeping tensors as first-class citi-

zens to maintain programming simplicity. To analyze com-

plex dependence introduced by fine-grained control flow,

our FreeTensor compiler takes advantage of polyhedral tech-

niques for automatic analysis, and thus we apply a series

of optimizations including parallelization, loop transforma-

tion, and memory hierarchy transformation to generate high-

performance code. Moreover, since differentiation is critical

in tensor programs, FreeTensor supports fine-grained auto-

matic differentiation with optimizations to reduce memory

redundancy by balancing between storing or re-computing

intermediate tensors.

In summary, we make the following contributions in this

work:

• We propose a free-form DSL, named FreeTensor, which

supports redundancy-avoid tensor programming by pro-

viding granularity-oblivious tensor operations.

• We provide holistic compilation optimizations in FreeTen-

sor to generate highly efficient tensor programs, including

partial evaluation on dimension-free programs with recur-

sions, dependence-aware transformations on fine-grained

control flows, and automatic code generation for different

architectures.

• FreeTensor supports fine-grained automatic differentia-

tion combined with efficient selective intermediate tensor

materialization.

• Evaluation shows that compared with existing tensor pro-

gramming frameworks, FreeTensor achieves up to 5.10×

873

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

speedup (2.08× on average) without differentiation, and

up to 127.74× speedup (36.26× on average) with differen-

tiation for typical irregular tensor programs.

The rest of this paper is organized as follows. Section 2

describes the problem with a detailed example. Section 3 and

Section 4 describe our DSL and code generation in FreeTen-

sor. Section 5 addresses performance issues in AD. Section 6

evaluates the performance of FreeTensor. Section 7 discusses

some related works. Section 8 concludes the paper.

2 Background and Motivation

2.1 Background

Existing tensor programming frameworks including Tensor-

Flow [3], PyTorch [29] express tensor programs as invoca-

tions to highly optimized libraries, including cuDNN [15],

cuBLAS [16], and Intel MKL [26]. As the rapid development

of tensor programs requires many new operators, code gen-

eration frameworks like TVM [12] are proposed to reduce

manual efforts.

However, these frameworks lack effective support on em-

erging irregular tensor programs, which have features of

partial operations on a complete tensor or complex con-

trol dependence. To cater to current frameworks, redundant

computation and memory access are introduced in these pro-

grams. Although general-purpose programming languages

like Julia [9] can partly eliminate these redundancies, they

still fail to generate high-performance code due to lacking

domain knowledge.

2.2 Motivating Example

We take SubdivNet [19] in Figure 2 as an example to demon-

strate the limitation of existing frameworks and how FreeTen-

sor works. The major component in SubdivNet is multiple

convolutions over a mesh. Similar to a traditional convolu-

tion over an image that combines the feature of each pixel

and its adjacent pixels, a mesh convolution in SubdivNet

combines the feature of each face and its adjacent faces. To

overcome the order-invariant nature among faces, Subdi-

vNet introduces a circular difference computation, which is

described in the red box of Figure 2(a). For each central face

𝑒𝑖 , SubdivNet finds the feature vectors of its three adjacent

faces 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2 via an adjacency array, and computes

their differences in a circular manner.

In this case, feature vectors 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2 are fetched

and used with respect to a central face, but will never be

reused by other central faces without extra indexed access.

Ideally, they should be created and used individually, instead

of gathering from all central faces before computations.

However, a typical implementation in an operator-based

framework requires collectively operating these data, which

is shown in Figure 2(b). Specifically, as shown in Figure 2(c),

the Pytorch implementation of this program consists of the

following steps:

𝑦𝑖 = 𝑤0𝑒𝑖 +𝑤1෍𝑗 𝑒𝑗 +𝑤2෍𝑗 |𝑒𝑗 − 𝑒𝑗+1| + 𝑤3෍𝑗 |𝑒𝑖 − 𝑒𝑗|
𝑒𝑖𝑒𝑗+1 𝑒𝑗+2𝑒𝑗

(a) SubdivNet computation of a single mesh convolution,

where there is a circular difference computation in the red

box.

𝑒𝑗 𝑒𝑗+1 𝑒𝑗+2
𝑦

𝑒 𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑙𝑒𝑐𝑡
𝑖𝑛𝑑𝑒𝑥 + 𝑐𝑎𝑡 𝑠𝑢𝑏 + 𝑎𝑏𝑠 𝑠𝑢𝑚

redundant over neighbors

𝑒𝑗𝑒𝑗+1 𝑒𝑗+2
(b)Operator-based implementation of the circular difference.

Step 1

adj_feat = index_select(e, 0, adj.flatten())

.reshape(n_faces, 3, in_feats)

Step 2

reordered_adj_feat = cat([adj_feat[:, 1:],

adj_feat[:, :1]], dim=1)

Step 3

y = sum(abs(adj_feat - reordered_adj_feat), dim=1)

(c) PyTorch code of the circular difference

Figure 2. Operator-based implementations of SubdivNet.

• Step 1: Construct a 3-D tensor (adj_feat) to store the

features of adjacent faces, by calling a flatten, an index_

select and a reshape in sequence. Each element in the

resulting tensor adj_feat[i, j, k] stores the k-th factor

of the feature of the j-th adjacent face of face i.

• Step 2: Slice the adj_feat tensor, reorder it, concatenate

it back, and now face 𝑒 𝑗+1 has the same index with the

original face 𝑒 𝑗 .

• Step 3: Do a subtraction and compute its absolute value.

After that, the sum is calculated.

Although every operator benefits from highly optimized

native code in a vendor-provided library, every intermediate

value should be stored as full-sized tensors, as depicted in

Figure 2(b). This introduces significant memory access redun-

dancy: tensor adj_feat is of size n_faces * 3 * n_feat,

which is much larger than input and output tensors and in-

curs a huge memory access overhead. Moreover, redundant

874

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

operators flatten, index_select, reshape, and cat, are

included, which are only used to rearrange existing data, but

do not perform a meaningful computation.

Even though TVM supports highly customized operators,

the indirect indexing on tensors still stops it from represent-

ing the programwithout combining traditional operators like

in Figure 2(b). A general-purpose programming language like

Julia is able to represent such a case in a fine-grained control

flow. However, it requires significant manual optimization

and parallelization.

2.3 Challenges of FreeTensor

To solve the problem above, we adopt a fine-grained con-

trol flow to remove unnecessary memory accesses, shown

in Figure 3(b). Specifically, we iterate each face i and its

neighbor j, and directly index the j-th and (j+1)-th face

from the input tensor e. After that, we perform fine-grained

tensor operations to calculate the difference, and result is

directly accumulated to a tensor y. Here, 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2
are individual tensors as shown in Figure 3(a), where each

tensor operation is fine-grained and performed individually.

𝑒𝑗𝑒𝑗+1 𝑖𝑛𝑑𝑒𝑥 𝑠𝑢𝑏 + 𝑎𝑏𝑠 𝑎𝑑𝑑_𝑡𝑜
Iterate on each face i

Iterate on each neighbor j

(a) Free-form implementation

for i in range(n_faces):

y = zeros(in_feats)

for j in range(3):

y += abs(e[adj[i, j], :]

- e[adj[i, (j + 1) % 3], :])

(b) Free-form implementation code

Figure 3. The circular difference of SubdivNet in FreeTensor.

FreeTensor adapts such a fine-grained approach to operate

each tensor. Compared to the operator-based implementa-

tion, the program in FreeTensor accesses tensor elements

in an on-demand manner, without redundant operations to

rearrange them beforehand. However, complex control flows

brought by FreeTensor introduce significant challenges for

efficient code generation. We summarize main challenges

here.

• Optimization with the presence of dependence. Fine-

grained control flow introduced by FreeTensor makes effi-

cient code generation even harder. We expect FreeTensor

can automatically generate performant code without too

much manual effort. However, complex control and data

dependence hinder potential code transformation.

• Efficient automatic differentiation on complex con-

trol flows. Automatic differentiation (AD) on a program

with complex control flow can further introduce much

redundancy, which neutralizes the benefit provided by a

free-form language. How to design a high-performance

AD mechanism is more challenging.

3 Free-Form DSL

This section describes how we design a free-form domain-

specific language (DSL) for emerging irregular tensor pro-

grams. As a DSL for tensor programs, tensors should be

treated as first-class citizens for programming simplification.

To support operations on partial tensors to eliminate redun-

dant computation and memory access, FreeTensor provides

support for tensor operations in any granularity by intro-

ducing fine-grained control flows and partial tensor index-

ing. Moreover, in order to generate high-performance code,

FreeTensor provides extra meta-information and program-

ming guidance for users to assist underlying compilation.

The rest of this section will elaborate on the above designs.

3.1 Tensors as First-Class Citizens

Tensor definition. FreeTensor treats tensors as first-class

citizens to ease programming difficulty. More specifically,

tensors (of various element types) are primary data types

in FreeTensor. We call a tensor with dimension 𝑁 an 𝑁 -D

tensor, and scalar is treated as a 0-D tensor. Tensors are

stored in a compact memory layout, and tensor shape is

not mutable once it is created. To guarantee that there is no

overlap between tensors, tensors are copied by values. Tensor

elements can be any primary scalar data type, including

integer, single/double/half floating point, etc., which cover

typical tensor programs’ needs.

declare a 3-D 32-bit floating-point tensor on cpu

A = create_var((2, 4, 6), "f32", "cpu")

B is a 1-D tensor copied from A[0, 1]

B = A[0, 1]

C is a 0-D tensor (scalar) copied from A[0, 1, 2]

C = A[0, 1, 2]

D is a 2-D tensor with shape (2, 6), whose is the

concatenation of A[0, 1] and A[0, 2]

D = A[0, 1:3]

Figure 4. Tensor definition and indexing.

Tensor indexing. Figure 4 shows how FreeTensor defines

and indexes a tensor. Tensors can be defined on different

devices, including CPU, GPU, etc. FreeTensor provides user-

friendly NumPy [18]-style indexing rules, which is capable

to index any sub-area in a tensor. Such indexing rules allow

users to index partial tensors, thus supporting operations on

875

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

partial tensors flexibly to avoid unnecessary computation

and memory access.

All the operations in FreeTensor’s DSL, including arith-

metic operators (+, -, *, /, etc.), built-in functions (sum, abs,

etc.), and function calls, are directly performed on tensors.

These operations will then be lowered to high-performance

native code, which will be introduced in Section 4.

3.2 Granularity-Oblivious Tensor Operations

Tensor operator is a widely used abstraction in tensor pro-

grams, bringing significant simplification for tensor program-

ming. Since irregular tensor programs usually operate partial

tensor instead of a whole tensor to save computation, sup-

porting partial tensor operations is necessary. Users of tra-

ditional operator-based frameworks are expected to invoke

operators as coarse-grained as possible. As mentioned in Sec-

tion 2, implementing irregular tensor programs with such

tensor operators will bring extensive computation and mem-

ory access redundancy. To tackle this problem, we introduce

granularity-oblivious operations in FreeTensor to provide

the ability to write redundancy-avoid tensor programs.

Q = create_var((seq_len, feat_len), "f32", "gpu")

K = create_var((seq_len, feat_len), "f32", "gpu")

V = create_var((seq_len, feat_len), "f32", "gpu")

@optimize # define an optimize region

def LongformerFwd(Q, K, V):

Y = create_var((seq_len, feat_len), "f32", "gpu")

for j in range(seq_len):

dot = create_var((2 * w + 1), "f32", "gpu")

for k in range(-w, w + 1):

if j + k >= 0 and j + k < seq_len:

dot[k + w] = sum(Q[j] * K[j + k])

Y[j] = compute_y(dot, V[j - w : j + w])

@optimize # define an optimize region

def compute_y(dot, V_j):

attn = softmax(dot)

... # the rest code is omitted

Figure 5. Free-form implementation code of Longformer in

Figure 1. The range j-w to j+w marks the sliding window.

To achieve granularity-oblivious tensor operations, we

introduce the following semantics in our DSL: integer ranged

for-loops, branches, and always-inlined function calls. We will

give more explanation about why we introduce these criti-

cal features in Section 4. With the help of these semantics,

FreeTensor can support tensor operations in any granularity.

Figure 5 shows an example how the Longformer example

in Figure 1 is implemented using FreeTensor. In this case,

we iterate along the input sequence with a for-loop j, and

iterate alongside the sliding window with a loop k. Elements

of K are directly accessed by index j+k, without copying the

whole tensor beforehand.

FreeTensor also provides a tensor operator library, called

libop, supporting operators ranging from basic operator-

like element-wise operations, reductions, and matrix mul-

tiplications to complex ones like a softmax. We implement

libop in pure DSL code instead of directly mapping to na-

tive code implementation. At compile time, function calls to

libop will be fully inlined as nested loops, then optimized

together with the rest of a program. For example, the tensor-

wise zeros, abs, - and += in Figure 3(b) are all provided by

libop.

3.3 Dimension-Free Programming

Tensor dimension is a key property for tensor computation,

and most operations of tensor programs are closely con-

nected to transformations around the tensor dimension. We

record dimension-related properties in the meta-data of a

tensor, which also enjoys first-class support. The dimension-

ality, shapes, element types, and device placements can be

accessed using the .ndim, .shape, .dtype, and .mtype prop-

erties, respectively. Particularly, tensor shapes are kept in

their expression form. For example, after we flatten an 𝑁 × 2

-shaped 2-D tensor A to a 1-D tensor B, we know that the

length of B should be 2𝑁 , instead of an arbitrary number. We

can safely assert that 2𝑁 is an even number and reshape B

back to an 𝑁 × 2 shape.

def add(A, B, C):

for i1 in range(A.shape(0)):

for i2 in range(A.shape(1)):

...

for ik in range(A.shape(k-1)):

C[i1,i2,...,ik] =

A[i1,i2,...,ik] + B[i1,i2,...,ik]

(a) Adding k-D tensors with k nested loops

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

(b) Adding tensors with any dimensionality with a finite recursion

Figure 6. Example of element addition for high-dimensional

tensors.

In FreeTensor, we express a computation for any dimen-

sionality with a finite recursion. Figure 6 gives an exam-

ple of how to write dimension-free tensor programs us-

ing finite recursions. As shown in Figure 6(a), if a tensor’s

876

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

shape cannot be determined when writing the tensor pro-

gram, users cannot write a straightforward nested-loop pro-

gram, which brings significant programming complexity. In

FreeTensor, we suggest users write tensor programs with un-

determined dimensionality using finite recursions, as shown

in Figure 6(b). Such recursions will be further expanded to

nested loops using partial evaluation at compile-time, which

will be illustrated in Section 4.1.

4 Generating High Performance Code

Our free-form DSL allows users to write tensor programs

without redundant computation or memory access. Pro-

grams written by FreeTensor DSL will be parsed to a stack-

scoped abstract syntax tree (AST), as FreeTensor’s intermedi-

ate representation (IR), to perform further optimizations and

generate high-performance native code. With this design,

each tensor is alive only in the sub-tree of its definition node,

called TensorDef node. The stack-scoped restriction brings

significant simplification for IR transformation: 1) we are

able to transformASTwithout breaking an allocation-freeing

pair; 2) by limiting the life scope of a tensor to a sub-tree,

most of the false dependence in dependence analysis can be

eliminated.

Figure 7 shows anAST of LongformerFwd function, whose

code is in Figure 5. We inline all function calls to perform

holistic optimizations across functions. Figure 8 shows the

resulting program of the example in Figure 5. After that, we

perform multiple optimizations on AST.

TensorDef 𝑌for 𝑗, 0, 𝑠𝑒𝑞_𝑙𝑒𝑛TensorDef 𝑑𝑜𝑡StmtSeqfor 𝑘, −𝑤, 𝑤 + 1 Store 𝑌 𝑖call 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑦, 𝑑𝑜𝑡, 𝑉 𝑗 − 𝑤, 𝑗 + 𝑤if 𝑗 + 𝑘 ≥ 0 and 𝑗 + 𝑘 < 𝑠𝑒𝑞_𝑙𝑒𝑛…
Figure 7. AST of LongformerFwd in Figure 5. Some nodes

are omitted.

4.1 Partial Evaluation for Dimension-Free

Programming

As mentioned in Section 3.3, users can write dimension-free

tensor programs with finite recursive functions. FreeTensor

supports such a feature by partially evaluating program with

respect to the meta-data of the tensors. By providing first-

class support on tensors with meta-data, dimensionalities

of all tensors in the programs are known at compile-time,

which makes it possible to apply partial evaluation for gen-

eral dimensionality programs implemented with recursion.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 for k in range(-w, w + 1):

5 if j + k >= 0 and j + k < seq_len:

6 dot[k + w] = 0

7 for p in range(feat_len):

8 dot[k + w] += Q[j, p] * K[j + k, p]

9

10 # compute_y, softmax is inlined

11 dot_max = create_var((), "f32", "gpu")

12 dot_max = -inf

13 for k in range(2 * w + 1):

14 dot_max = max(dot_max, dot[k])

15 dot_norm = create_var((2 * w + 1), "f32", "gpu")

16 for k in range(2 * w + 1):

17 dot_norm[k] = dot[k] - dot_max

18 ...

Figure 8. Inlined program of the example in Figure 5.

We take the code in Figure 6(b) as an example to illustrate

evaluating process, shown in Figure 9. Figure 9(a) is the origi-

nal program, with a recursive function call add. Suppose that

A is a 3-D tensor, then our compiler knows that the if con-

dition is always false, so all the statements in the if branch

are discarded, while the statements in the else branch will

always be executed. The function call add at the last line is

then evaluated, resulting in an optimized program as shown

in Figure 9(b). Then the compiler repeats such partial evalu-

ation process in Figure 9(b). Notice that A[i] is a 2-D tensor.

Finally, the final program after applying partial evaluation

is shown in Figure 9(c), where the recursive function call is

transformed into a nested loop.

4.2 Dependence-Aware Transformation

After inlining, we need to perform a series of transforma-

tions on the AST to generate efficient code from FreeTensor

IR. We apply a rich collection of transformations for various

optimizations, including transformations on loops, paral-

lelization, memory hierarchy, memory layout, and others, as

summarized in Table 1. These transformations are similar to

the schedule optimizations of Halide [31] and TVM [12], but

the fine-grained control flow brings significant challenges on

how to correctly apply these transformations. For example,

TVM only supports transformations on a perfectly nested

loop, meaning that there is no complex dependence that

needs to be considered while transforming. However, after

applying fine-grained control flow, complex dependence is

introduced. Still taking Figure 8 as an example, fusing loops

at Line 4, 13, and 16 can bring better locality. fusing the loops

at Line 4 and 13 is possible, but fusing the loops at Line 13

and 16 is incorrect because of the inter-iteration dependence

877

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Table 1. AST transformations

Name Description

L
o
o
p

T
ra
n
s.

split Split a loop into two nested loops

merge Merge two nested loops into one

reorder Reorder nested loops

fission Fission a loop into two consecutive loops

fuse Fuse two consecutive loops into one

swap Swap two consecutive statements including loops

P
ar
al
le
li
zi
n
g

T
ra
n
s.

parallelize Run a loop with multiple threads

unroll Unroll a loop into multiple copies of statements

blend Unroll a loop and interleave its statements from each iterations

vectorize Implement a loop with vector instructions

M
em

o
ry

H
ie
ra
rc
h
y

T
ra
n
s. cache Fetch part of a tensor to a smaller one before some statements, and store it back after that

cache_reduce Create a small tensor before reductions, and reduce back to the original tensor after that

set_mtype Change where a tensor stores

M
em

o
ry

L
ay
o
u
t

T
ra
n
s. var_split Split a dimension of a tensor into two

var_reorder Transpose two dimensions of a tensor

var_merge Merge two dimensions of a tensor

O
th
er
s

as_lib Fall back to calling vendor libraries for common computations

separate_tail Separate the main body and tailing iterations of a loop, to reduce branching overhead

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

A is a 3-D tensor, always false

Always true

(a) Source program
(a) Source program

for i in range(A.shape(0)):

if A[i].ndim == 0:

C[i] = A[i] + B[i]

else:

for j in range(A[i].shape(0)):

add(A[i][j], B[i][j], C[i][j])

A[i] is a 2-D tenor

(b) The program after first round partial evaluation
(b) The program after first round partial evaluation

for i in range(A.shape(0)):

for j in range(A[i].shape(0)):

for k in range(A[i][j].shape(0)):

C[i][j][k] = A[i][j][k] + B[i][j][k]

Repeated

(c) Target program
(c) Target program

Figure 9. Example of partial evaluation on dimension-free

recursion. Suppose A, B, and C are 3-D tensors.

on dot_max. The fused program is shown in Figure 10, where

an offset "+w" is applied to iterator k, to make the indices

consistent.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 dot_max = create_var((), "f32", "gpu")

5 dot_max = -inf

6 for k in range(-w, w + 1):

7 if j + k >= 0 and j + k < seq_len:

8 dot[k + w] = 0

9 for p in range(feat_len):

10 dot[k + w] += Q[j, p] * K[j + k, p]

11 dot_max = max(dot_max, dot[k + w])

12 dot_norm = create_var((2 * w + 1), "f32", "gpu")

13 for k in range(2 * w + 1):

14 dot_norm[k] = dot[k] - dot_max

15 ...

Figure 10. Fused program of the example in Figure 8.

Since the dependence determines whether a transforma-

tion is correct, FreeTensor performs dependence analysis

before applying transformations. Different from operator-

based frameworks, we need to analyze programs in an instan-

ce-of-statement-wise precision instead of statement-wise

precision, where an instance of a statement refers to a state-

ment in a specific loop iteration. This means traditional data-

flow-graph-level analysis is not enough for FreeTensor.

There have been many studies on how to analyze depen-

dences in an instance-of-statement-wise precision and how

878

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

to guide a program transformation given the dependences.

Early studies are summarized in [28] and [4]. Later, a mathe-

matical theory named polyhedral analysis is introduced to

analyze dependences systematically, and multiple solvers

of polyhedral analysis are designed to automate the analy-

sis. Given memory accesses defined as Presburger formulas,

dependences can be derived by solving equations and inequa-

tions of them [40]. Works on theories and solvers of polyhe-

dral analysis include Omega [30], PolyLib [23], PPL [6] and

isl [39].

In FreeTensor, we use isl for dependence analysis, and

implement ideas of dependence-aware program transfor-

mations discussed in [28] and [4] in our IR. In the rest of

this section, we will illustrate how FreeTensor adopts these

techniques to perform dependence-aware transformations,

including loop transformations, parallelizing transformations,

and memory transformations.

a = create_var((N, M), ...)

for i in range(1, N - 1):

for j in range(1, M - 1):

a[i + 1, j] # (1)

= a[i - 1, j + 1] # (2)

+ a[i - 1, j - 1] # (3)

Figure 11. Example program with complex inter-iteration

dependence.

4.2.1 Loop transformations. Take the program in Fig-

ure 11 as an example. There is a read-after-write (RAW)

dependence between (2) and (1), and a RAW dependence

between (3) and (1). We need to keep both dependence

when transforming the loops.

In polyhedral analysis, each memory access, (1), (2)

or (3), is defined as a mapping from an iteration space

Z
(𝑁−2)×(𝑀−2) to an array index spaceZ𝑁×𝑀 , describingwhich

array index is accessed in which iteration:

𝑀(1) = {(𝑖, 𝑗) → (𝑖 + 1, 𝑗) : 1 ≤ 𝑖 < 𝑁 − 1, 1 ≤ 𝑗 < 𝑀 − 1}

𝑀(2) = {(𝑖, 𝑗) → (𝑖 − 1, 𝑗 + 1) : 1 ≤ 𝑖 < 𝑁 − 1, 1 ≤ 𝑗 < 𝑀 − 1}

𝑀(3) = {(𝑖, 𝑗) → (𝑖 − 1, 𝑗 − 1) : 1 ≤ 𝑖 < 𝑁 − 1, 1 ≤ 𝑗 < 𝑀 − 1}

By combining these mappings using isl, we infer the

RAW dependence between (2) and (1) as:

𝑀(2)→(1)

={p → q : ∃r : (p → r) ∈ 𝑀(1) ∧ (q → r) ∈ 𝑀(2) ∧ p >𝑙𝑒𝑥 q}

={(𝑖, 𝑗) → (𝑖 − 2, 𝑗 + 1) : 1 ≤ 𝑖 < 𝑁 − 1, 1 ≤ 𝑗 < 𝑀 − 1},

where >𝑙𝑒𝑥 means lexicographically greater, and ∧ means

logical and.

From𝑀(2)→(1) , we know (1) should be 2 iterations later

in i and 1 iteration earlier in j than (2). We keep this re-

striction when transforming the loops. For example, we can-

not reorder these two loops, otherwise the statement will

access an element not computed yet. Restrictions for the

dependence between (3) and (1) are similar.

To explain more specifically how dependence limits the

loop transformations, we take the examples in Figure 12 and

discuss whether a reorder transformation can be applied

on the nested loop.

• Applying reorder on the program in Figure 12(a) is cor-

rect because there is no dependence along the reverse

direction of each loop.

• Applying reorder on the program in Figure 12(b) is in-

correct since there is a dependence (𝑖, 𝑀 − 1) → (𝑖 + 1, 0).

• Applying reorder on the program in Figure 12(c) is cor-

rect because additive communicative law allows us to re-

duce b[i,j] to a in any order. FreeTensor introduces a

ReduceTo node to process any a=a+b like statements, and

any WAW dependence between ReduceTo nodes can be

ignored.

• Applying reorder on the program in Figure 12(d) is cor-

rect because t with a WAW dependence is a false depen-

dence. FreeTensor’s stack-scoped AST can easily filter out

the false dependence. In this case, there is a WAW de-

pendence (𝑖1, 𝑗1, 𝑘1) → (𝑖2, 𝑗2, 𝑘2) on tensor t. Since t’s

lifetime is inside the loop j, FreeTensor performs a pro-

jection {(𝑖, 𝑗, 𝑘) → (𝑘) : 𝑖, 𝑗, 𝑘 ∈ Z} on t’s dependence,

resulting a dependence (𝑘1) → (𝑘2). Thus, FreeTensor can

apply reorder transformation on loop i and j.

for i in range(N):

for j in range(M):

a[i, j] = b[i, j] + 1

(a) Can reorder

for i in range(N):

for j in range(M):

a = a * b[i, j] + 1

(b) Cannot reorder

for i in range(N):

for j in range(M):

a = a + b[i, j]

(c) Can reorder

for i in range(N):

for j in range(M):

t = create_var((K), ...)

for k in range(K):

t[k] = a[i, j, k]

b[i, j, k] = t[k]

(d) Can reorder

Figure 12. Correct and incorrect cases for applying a

reorder transformation on loop i and j.

4.2.2 Parallelizing transformations. Since tensor pro-

grams always requiremassive parallelism, parallelizing trans-

formations are critical for high-performance code genera-

tion. The challenges of parallelizing transformations not only

come from complex dependence introduced by fine-grained

control flow but also come from various parallel models on

different hardware architectures. We take the examples in

Figure 13 to illustrate how FreeTensor applies parallelizing

transformations.

879

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

for i in range(N):

a[i] = b[i] + 1

(a) Can parallelize

for i in range(N):

a = a * 2 + b[i]

(b) Cannot parallelize

for i in range(N):

a[i] = b # b can be either thread-local or shared

(c) Depends on parallel model and memory hierarchy

for i in range(N):

a += b[i]

(d) Can parallelize with a

parallel reduction algorithms

for i in range(N):

a[idx[i]] += b[i]

(e) Can parallelize with

atomic operations

Figure 13. Correct and incorrect cases for applying

parallelize on loop i.

• Figure 13(a) shows a parallelizable program without de-

pendence.

• Figure 13(b) shows a non-parallelizable examplewith cross-

thread dependence.

• In Figure 13(c), whether parallelize transformation can

be applied is relevant with specific parallel models and

memory hierarchy. For example, if b is thread-local, loop

i cannot be parallelized because b is only visible on one

of the threads; but if b is stored on shared memory, this

loop can then be parallelized, because b is visible on all

threads.

• Figure 13(d) presents a reduction along with the same

index, which can be lowered with parallel reduction algo-

rithms.

• Figure 13(e) presents a random-access reduction, which

can be parallelized with atomic instructions.

4.2.3 Memory transformations. There are two types of

memory transformations that need to be applied: memory

layout optimization, and memory hierarchy optimization.

Memory layout transformations help improve spatial

locality in data access by reordering elements in a tensor.

For example, we can transpose an (𝑁 ×𝑀)-shaped tensor to

an (𝑀 × 𝑁) shape, so that the 𝑁 dimension can be iterated

contiguously.

Different from the design in TVM, which performs mem-

ory layout optimizations by altering the combination of op-

erators, we implement these optimizations as fine-grained

AST transformations, which exposes more opportunities to

perform holistic optimizations with other transformations.

Memory hierarchy transformations help use cache and

scratch-pad memory on processors.

The cache and cache_reduce transformations introduce

new tensors into the AST, and we have to infer their sizes.

For the program in Figure 14(b), the problem is how to infer

that the newly introduced tensor a.cache is of a shape M and

for i in range(n):

for j in range(m):

f(a[i + j])

(a) Source Program

for i in range(n):

a.cache = create_var((m,), ...)

for j in range(m):

a.cache[j] = a[i + j]

for j in range(m):

f(a.cache[j])

for j in range(m):

a[i + j] = a.cache[j]

(b) Target Program

Figure 14. Example of applying the cache transformation

for tensor a around loop j.

c[j] maps to a[i+j]. To solve this problem, we analyze the

lower and upper bounds of each index of tensors, which is

i+j in this program. 0, i, and i+j are all lower bounds of i+j,

while n+m-2, i+m-1, and i+j are all upper bounds of it. We

keep all of these bounds. Since we are caching between the

outer loop and the inner loop, where iterator i is defined but

j is not, we look for the tightest bound, which is [i, i+m-1],

or [i, i+m). Therefore, we know we are caching a[i:i+m]

to an m-shaped tensor a.cache.

4.3 Code Generation

All the transformations we provide are exposed to users.

We provide an API to query a statement in the program in

order to apply a transformation. We also recognize that it

may require some expertise to optimize a program using

these transformations, and most users may expect an auto-

matic strategy to apply these transformations. FreeTensor

implements a prototype of a rule-based auto-transforming

strategy to tackle such challenges. We currently implement 6

passes to try applying the transformations. These passes are

driven by heuristics considering specific architectures and

invoked one by one. Thanks to the dependence analysis in

Section 4.2, we can aggressively try transformations without

worrying about their correctness. The passes include:

1. auto_fuse: Try to fuse nearby loops to increase locality

using the fuse transformation. Other transformations like

swap may be applied to enable it.

2. auto_vectorize: Find some loops that access data con-

tiguously, reorder them as inner-most loops using loop

transformations, and then implement a loop with vector

instructions or warp with the vectorize or parallelize

transformation.

3. auto_parallelize: Merge some outer loops with the

merge transformation, and then bind them to threads with

the parallelize transformation. For some backends like

GPU featuringmultiple levels of parallelism, we split loops

using split before binding them.

880

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

4. auto_mem_type: Try to put tensors as near to processors

as possible. Registers are preferred over scratch-pad mem-

ory, which is further preferred over main memory.

5. auto_use_lib: Try to replace computation-intensive sub-

programs with calls to external libraries with the use_lib

transformation. Transformations like fissionmay be ap-

plied to enable it.

6. auto_unroll: Unroll very-short loops to unleash optimiz-

ing opportunities for backend compilers.

For any user program, these passes are automatically in-

voked, but users are free to override them andmanually apply

other transformations. Beyond these basic strategies, we are

working on a machine-learning-guided solution similar to

Ansor [44], which will be our future work.

We apply further optimizations on the AST after trans-

formations, including simplification on mathematical ex-

pressions, merging or removing redundant memory access,

and removing redundant branches. We also perform some

backend-specific post-processing including inserting thread

synchronizing statements, generating parallel reduction state-

ments, and computing offsets of tensors in scratch-pad mem-

ory.

After that, we generate OpenMP or CUDA code from the

AST and invoke dedicated backend compilers like gcc or

nvcc for further lower-level optimizations, and native code

generations. A DSL function is finally compiled as a shared

library, which can be dynamically loaded from Python to

run.

5 Automatic Differentiation

5.1 Fine-Grained Automatic Differentiation

Automatic Differentiation (AD) is desired for tensor applica-

tions. AD helps users generate a gradient program from an

original program, where a gradient program is used to com-

pute the gradient of each input with respect to the program’s

output. A gradient program consists of a forward pass and a

backward pass. The forward pass computes the output while

keeping some intermediate tensors during its execution. The

backward pass computes gradients and reuses intermediate

tensors kept by the forward pass.

Inspired by Enzyme [27] and Zygote [20], we design a gen-

eral AD that is capable to differentiate fine-grained control

flow introduced by FreeTensor. Figure 15(b) gives an example

of a backward pass generated from the original program in

Figure 15(a). We keep in mind that the differentiated pro-

gram should still be optimizable by FreeTensor. Therefore,

we design our AD as a transformation pass on the AST. The

resulting program is also an AST, which enjoys the same

optimization opportunities as the original program.

One of the problems that hinder optimizing the differenti-

ated program lies in intermediate tensors. In the procedure

of AD, some intermediate tensors should be materialized in a

forward pass, and then retrieved back in the backward pass.

This procedure is also called checkpointing or saving a ten-

sor into a tape in some literature. However, an intermediate

tensor may be written many times in the program, so it has

to be materialized into multiple versions. For example, the

scalar t in Figure 15(a) (treated as a 0-D tensor) will be mate-

rialized in version i after its i-th assignment. Some existing

works like Tangent [36] and Zygote [20] maintain a version

number at run time, which hinders further parallelization.

Instead, we analyze a symbolic version number in FreeTen-

sor, similar to Enzyme [27]. Specifically, taking advantage of

the polyhedral analysis, we look for WAR dependence on t,

where eachWAR dependence corresponds to a version. Thus,

the version number is known at compile time as a symbolic

expression, which helps further parallelization.

for i in range(n):

t = a[i] * b[i] # To be materialized in t.tape[i]

y[i] = t * c[i]

z[i] = t * d[i]

(a) Original program

for i in range(n):

t.grad = z.grad[i] * d[i] + y.grad[i] * c[i]

d.grad[i] = z.grad[i] * t.tape[i]

c.grad[i] = y.grad[i] * t.tape[i]

b.grad[i] = t.grad * a[i]

a.grad[i] = t.grad * b[i]

(b) Backward pass with reuse

for i in range(n):

t = a[i] * b[i]

t.grad = z.grad[i] * d[i] + y.grad[i] * c[i]

d.grad[i] = z.grad[i] * t

c.grad[i] = y.grad[i] * t

b.grad[i] = t.grad * a[i]

a.grad[i] = t.grad * b[i]

(c) Backward pass with recomputing

Figure 15. Example of AD, where t.tape means the inter-

mediate value materialized in the forward pass.

5.2 Selective Intermediate Tensor Materialization

Directly transforming the AST does not always result in

expected performance, and we observe a significant perfor-

mance degradation resulting frommaterializing intermediate

tensors. In many AD tools, all intermediate tensors are ma-

terialized, which will introduce significant overhead in both

memory usage and access. We use an example to illustrate

it.

In Figure 15, t is stored in the original program until

reused with t.tape. In the example above, t is a scalar,

probably stored in cache or even registers. However, as t

881

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

is updated for every iteration i, the forward pass would

materialize all its versions for future usage. Therefore, the

materialized tensor of t, i.e., t.tape, comes with a large

shape n, which incurs a great overhead, both on memory

footprint and memory usage.

On the contrary, computing t requires only one addition

and two accesses to a[i] and b[i] in this case, where a[i]

and b[i] are well cached because it is shared when comput-

ing a.grad[i] and b.grad[i]. Inspired by a recomputing

approach that is previously proposed to reduce memory

usage for operator-based frameworks [13], we propose a

selective strategy for intermediate tensor materialization.

The core idea of our approach is that we will determine

whether an intermediate tensor will be materialized or re-

computed at compile time. We balance the overhead between

materialization and recomputing and select a suitable strat-

egy. For the program shown in Figure 15, we adopt recomput-

ing strategy by its non-intensive computing. The resulting

program is shown in Figure 15(c). The overhead of materi-

alizing a tensor depends on how many versions the tensor

has. t in Figure 15 is updated n times so it has to be ma-

terialized in n versions, where the number of the versions

is known at compile time thanks to our symbolic version

number analysis.

6 Evaluation

6.1 Experimental Setup

Platforms. We evaluate FreeTensor on a server with dual

12-core Intel Xeon CPU E5-2670 v3 processors (hyper-thread

enabled) and an NVIDIA Tesla V100-PCIE with 32GB GPU

memory. The major compilers and libraries leveraged by

FreeTensor and other baselines include Python 3.8.6, GCC

8.4.0, CUDA 10.2.89, MKL [26] 2020.3.279, and cuBLAS [16]

10.2.89.

Comparisons. We compare FreeTensor with PyTorch [29]

1.8.1 and JAX [17] 0.2.19 for traditional operator-based frame-

works, TVM [12] commit c7a01a4 (Nov 4, 2021) for customiz-

able operation-based frameworks, Julia [9] 1.6.3 for tensor-

oriented general-purpose languages and DGL [43] 0.7.1 for

a dedicated framework on Graph Neural Networks.

Workloads. We evaluate our language and compiler with

the following applications: SubdivNet [19], Longformer [8],

SoftRas [22], and GAT [38].

SubdivNet is a Convolution Neural Network for predicting

properties of 3-D objects represented in meshes, which is

described in Section 2. A SubdivNet is built with a chain of

Mesh Convolution layers. Each layer renews the features of

faces in the mesh by aggregating their neighbor faces with

fine-grained tensor computations.

Longformer is an Attention-based Neural Network for

natural language processing, which adopts an improved At-

tention layer. Instead of computing correlations for all tokens

against all tokens, Longformer computes correlations only

for pairs of nearby tokens that have a distance no greater

than a threshold and thus it is capable to process much longer

sequences. The improved Attention consists of fine-grained

control flows.

SoftRas is a differentiable renderer for 3-D objects in mesh-

es. In SoftRas, the rendering procedure from a 3-D object

to an image is modeled as a continuous function to enable

differentiation. Soft Rasterizer is the major component in

SoftRas, which includes fine-grained computation on every

pixel-face pair to determine their geometric relationship.

GAT is a Graph Neural Network model for predicting

properties of a graph. A GAT is built with a chain of lay-

ers. Each layer renews the features of a node in the graph

by combining their neighbor nodes by fine-grained tensor

computations.

6.2 End-to-End Performance

We compare the execution time of each case in Figure 16(a),

and the gradient programs generated by AD in Figure 16(b),

on both CPU and GPU backends. Each result is measured

by averaging 100 repeated runs after 10 warming-up runs1.

We use random input for the test, and compare the output

among each implementation.

We implement each case in PyTorch and JAX purely with

existing operators, without custom plugins. For TVM, we

implement most computations as custom operators to avoid

redundant computation and achieve better performance, but

fall back to combining existing TVM operators if it cannot

be expressed by TVM tensor expression. We tune with An-

sor [44] (the auto-scheduler in TVM) by at most 1000 rounds

per operator for each case, if possible. Julia requires human

decisions to implement a performant program. We make the

following decisions, which we consider typical for a common

application programmer: In Julia, a program can either be im-

plemented by fine-grained control flows or by operators. We

prefer the former for its low redundancy, but it requires man-

ual parallelization. Because parallelization is non-trivial on

GPUs, and because parallelization after AD is unsupported

in Julia, we only run the CPU-without-differentiation case

with fine-grained control flows, and we run other cases with

pure operators. Since GAT requires special operators, we do

not compare with PyTorch or JAX in this case, but turn to a

dedicated framework DGL. TVM provides such an operator,

but fails to build GAT due to the complex indirect memory

access in the computation.

For gradient programs, we report the total time of the

forward pass and the backward pass2, where some variables

are saved in the forward pass until reused in the backward

pass. TVM does not support AD. Although Julia supports

1For cases falling back to sequential programs, we repeat them for 20 times

in the evaluation since their execution time is stable and long.
2The outputs of the programs are tensors, but JAX and Julia require to

compute gradients with respect to a scalar, so we sum the output to compute

it, where the overhead is neglectable.

882

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

A B C D F
10−2
10−1
100
101
102
103
104

5.10x

SubdivNet CPU

A B C D F
10−2
10−1
100
101
102
103
104

2.70x

Longformer CPU

A B C D F
10−2
10−1
100
101
102
103
104

0.41x

SoftRas CPU

C D E F
10−2
10−1
100
101
102
103
104

IC
E

1.42x

GAT CPU

A B C D F
10−2
10−1
100
101
102
103
104

2.43x

SubdivNet GPU

A B C D F
10−2
10−1
100
101
102
103
104

0.50x

Longformer GPU

A B C D F
10−2
10−1
100
101
102
103
104

W
A

2.07x

SoftRas GPU

C D E F
10−2
10−1
100
101
102
103
104

IC
E

1.98x

GAT GPU

Ex
ec

. T
im

e
(m

s)

(A) Pytorch (B) JAX (C) TVM (D) Julia (E) DGL (F) FreeTensor

(a) Time without differentiation

A B C D
10−1
100
101
102
103
104
105
106

2.17x

SubdivNet CPU

A B C D
10−1
100
101
102
103
104
105
106

6.90x

Longformer CPU

A B C D
10−1
100
101
102
103
104
105
106

42.18x

SoftRas CPU

A B C D
10−1
100
101
102
103
104
105
106

W
A 2.73x

SubdivNet GPU

A B C D
10−1
100
101
102
103
104
105
106

O
O

M

O
O

M

O
O

M
Longformer GPU

A B C D
10−1
100
101
102
103
104
105
106

O
O

M 127.74x

SoftRas GPU

Ex
ec

. T
im

e
(m

s)

(A) Pytorch (B) JAX (C) Julia (D) FreeTensor

(b) Time with differentiation, each including a forward pass and a backward pass

Figure 16. End-to-end time with or without differentiation. ICE (Internal Compiler Error) means the compiler or framework

crashes when compiling. OOM (Out of Memory) means the program compiles but is unable to run for consuming too much

memory. WA (Wrong Answer) means the parallelized or differentiated program outputs a wrong result, even though the serial

non-differentiated program written by users is correct, which reveals a bug in the corresponding baseline.

programming in fine-grained control flows, such a program

cannot be parallelized because Julia performs AD in an SSA

IR which is not exposed to ordinary users. Therefore, we

implement all cases in operators. Since the gradient program

of GAT is non-trivial which requires preprocessing a sparse

matrix, we do not report the gradient time of GAT.

Without differentiation. Our speedup over the best base-

line for each case is up to 5.10×, and 2.08× on average, with-

out differentiation.

SubdivNet can hardly be represented in any of the base-

lines without redundancy, so we are consistently faster.

Longformer is hard to be implemented in traditional oper-

ator-based frameworks without redundancy, but we can im-

plement its sliding windows access as perfect nested loops

in TVM. However, we still have to combine other operators

including softmax. We achieve better performance in all

cases except for comparing with TVM on a GPU.

SoftRas includes complex geometric computations, which

requires combining a large number of operators in an oper-

ator-based framework. Fortunately, in JAX and PyTorch, this

application can be accelerated by expressing the computation

for individual faces and looping over multiple faces via the

vmapmeta-operator provided in the two frameworks. Taking

this into comparison, we still achieve better performance in

all cases except for comparing with JAX on CPUs.

For GAT, we achieve better performance even over DGL,

which is a dedicated framework for Graph Neural Networks,

because we can implement more computations in fewer ker-

nels. Comparing with Julia, although we use fine-grained

control flow for CPU cases, we achieve better performance

because we are able to apply more optimizations.

With differentiation. For gradient programs, our speedup

over the best baseline for each case is up to 127.74×, and

883

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

A B C D E
0

5

10

15

20
Co

un
t

16.67%

Kernel Invocations

A B C D E
0

2e7

4e7

6e7

8e7

By
te

s

3.31%

DRAM Access

A B C D E
0

2e7

4e7

6e7

8e7

1e8

By
te

s

18.38%

L2 Access

A B C D E
0

1e8

2e8

Co
un

t

79.72%

FLOP

(A) Pytorch (B) JAX (C) TVM (D) Julia (E) FreeTensor

Figure 17. Analysis of the speedup of SubdivNet GPU. The metrics refer to the number of GPU kernel invocations, the total

bytes of access to GPU DRAM and L2 cache, and the FLOP count, respectively.

FT(-) FT(+)
0

2

4

6
1.21x

SubdivNet CPU

FT(-) FT(+)
0

2

4

5.53x

SubdivNet GPU

FT(-) FT(+)
0

2000

4000
1.08x

Longformer CPU

FT(-) FT(+)
0

100

200

300

3.50x

Longformer GPU

FT(-) FT(+)
0

250

500

750

6.83x

SoftRas CPU

FT(-) FT(+)
0

1

2

3

O
O

M
O

O
M

SoftRas GPU

Ex
ec

. T
im

e
(m

s)

Forward Backward

Figure 18. Time of FreeTensor without Selective Intermediate Tensor Materialization (FT(-)), and with Selective Intermediate

Tensor Materialization (FT(+)). The time is broken down into a forward pass and a backward pass. OOM (Out of Memory)

means the program is unable to run for consuming too much memory.

36.26× on average, where FreeTensor outperforms all base-

lines. Julia runs for an extremely long time in CPU cases

because it falls backs to single-thread execution for many

operators. All baselines fail to run Longformer on GPU since

the tight GPU memory limitation, but FreeTensor success-

fully executes it. The recomputing mechanism in FreeTensor

allows us to store much fewer intermediate tensors than the

baselines, which not only results in a better performance,

but also enables FreeTensor to run with a limited memory

capacity (32GB on a GPU).

6.3 Analysis of the Speedup

We further profile SubdivNet without differentiation case

running on a GPU to understand the reasons of our speedup.

As shown in Figure 17, FreeTensor is able to run the case

with only one GPU kernel invocation. This is achieved by

supporting irregular computation, which enables users to

implement the program as a whole. On the contrary, the

baselines require chaining multiple operators, which leads

to no less than 6 kernel invocations.

By using fewer operators, the memory footprint is also

reduced to only 3.31% on DRAM and 18.38% on L2 compared

to the best baseline. The reason is that intermediate results

can now be kept in registers, shared memory or cache, while

the baselines require storing them back to global memory

between operators.

As the result also shows, FreeTensor is even able to reduce

FLOP counts to 79.72% compared to the baseline, though

we do not apply any algorithmic optimizations. A poten-

tial reason is that implementing a program with only one

GPU kernel reveals more opportunities for backend compil-

ers (nvcc) to apply arithmetic optimizations like Common

Subexpression Elimination.

Profiling on the other cases shows similar results.

6.4 Optimization for AD

We analyze our Selective Intermediate Tensor Materializa-

tion introduced in Section 5.2 for AD. As Figure 18 shows,

compared to materializing all intermediate tensors, our Selec-

tive Intermediate Tensor Materialization contributes 1.21×

to 6.83× speedup, and prevents one of the cases from running

out of memory.

In particular, we can observe a significant speedup in a

forward pass, and in some cases, a moderate speedup in a

backward pass. For any tensor that our algorithm decided

to recompute it rather than to materialize it, there is a pure

performance gain in a forward pass, since we no longer

need to allocate memory and write to the memory for the

materialization. As for a backward pass, there will also be a

performance gain if the recomputing overhead is less than

the reusing overhead.

6.5 Compiling Time

We compare the compiling time used to compile the program

in Figure 16(a) between FreeTensor and TVM, as shown in Ta-

ble 2. We report the end-to-end compiling time including the

884

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

auto-transforming time in FreeTensor, and the auto-tuning

time in TVM. We also report the total tuning rounds for the

multiple operators in TVM and the average tuning time of

each round. For each operator, TVM needs to tune multi-

ple rounds to reach an acceptable performance, resulting in

an extremely lengthy procedure. Since TVM cannot tune a

computation including indirect memory access, TVM has to

divide the application into multiple operators and tune them

separately, which further extends the compiling time. With

only 0.13% to 22.92% compiling time of TVM, FreeTensor

generates faster code on most of the evaluated applications.

Table 2. Compiling time of FreeTensor and TVM. Time of

FreeTensor includes auto-transforming. Time of TVM in-

cludes auto-tuning, where the tuning rounds and the time

per round are marked in parentheses. ICE means Internal

Compiler Error.

FreeTensor

time

TVM time

(rounds × each)

SubdivNet CPU 12.37 s 196 s (54 × 3.63 s)

SubdivNet GPU 13.10 s 237 s (131 × 1.81 s)

Longformer CPU 3.90 s 7531 s (2944 × 2.56 s)

Longformer GPU 8.30 s 8019 s (2944 × 2.72 s)

SoftRas CPU 4.43 s 2499 s (1024 × 2.44 s)

SoftRas GPU 9.49 s 10 361 s (2060 × 5.03 s)

GAT CPU 5.89 s ICE

GAT GPU 9.17 s ICE

7 Related Works

Operator-based frameworks. There aremultiple operator-

based frameworks including Chainer [34], PyTorch [29],

MXNet [11], TensorFlow [3], JAX [17], and TVM [12]. Chain-

er and PyTorch run as high-performance tensor operator

libraries, which can be invoked imperatively from Python.

MXNet and TensorFlow transform a program to a dataflow

graph, where each node represents a call to a tensor oper-

ator in a library. Optimizations can be performed on the

graph before execution. JAX improves optimization by intro-

ducing Just-in-Time compilation to enable optimizations for

complex or dynamic programs. TVM supports highly cus-

tomized operators by introducing a compute-and-schedule

programming model, where users first specify the mathe-

matical definition of computation and then optimize it with

explicit or machine-learning-guided transformations [14].

XLA [1], TensorRT [2], TASO [21], Rammer [24], and

PET [42] optimize tensor programs by re-combining ten-

sor operators. Comparing with these works, we try not to

introduce too many operators in the first place.

Compilers based on polyhedral analysis. Multiple com-

pilers adopt optimizations based on Polyhedral Analysis.

Pluto [10], PPCG [41], and CHiLL [32] are optimizing com-

pilers for general programs in C language. PPCG designs

an analytical cost model and performs optimization by solv-

ing an analytical model, while CHiLL implements transfor-

mations specified by users that are guided by polyhedral

analysis.

Tensor Comprehensions [37] and Tiramisu [5] introduce

polyhedral analysis to tensor programs. They improve oper-

ator-based framworks by optimizing their existing operators

with polyhedral analysis. We adopt polyhedral analysis to

guide our AST transformations on user-defined irregular

tensor programs.

Tensor-oriented design in general-purpose program-

ming languages. There are also some improvements in

general-purpose programming language for better supports

on tensors. Julia [9] provides efficient support on tensors,

where consecutive calls to tensor operations can be auto-

matically fused with macros. Triton [33] improves CUDA

and provides a tiled programming model for implementing

tensor operations on a GPU.

Automatic differentiation. There are several ways to im-

plement automatic differentiation [7, 35]. AD implemented

by most operator-based frameworks is based on graphs,

where a node represents a call to a tensor operation library,

and an edge represents a tensor [25, 29]. The AD process

replaces all the nodes to their gradient counterpart and re-

verses the order of the graph using the Chain Rule.

Tangent [36], Myia [35], Enzyme [27], and Zygote [20]

implement AD for general tensor programs by directly trans-

forming IR. We adopt this type of techniques in FreeTensor,

and further resolve its performance issues.

8 Conclusion

We propose FreeTensor, a free-form DSL for irregular tensor

programs. FreeTensor supports granularity-oblivious ten-

sor operations by enabling fine-grained control flows, and

integrates a series of optimizations, including partial evalua-

tion, dependence-aware transformation, and automatic code

generation, to generate high-performance code for different

architectures. FreeTensor also supports fine-grained auto-

matic differentiation to generate efficient gradient programs.

Experiments show a speedup over existing tensor program-

ming frameworks up to 5.10× (2.08× on average) for without

differentiation, and up to 127.74× (36.26× on average) after

differentiation.

Acknowledgments

We would like to thank the anonymous reviewers and our

shepherd, Raghu Prabhakar, for their valuable comments

and suggestions. This work is supported by National Key

R&D Program of China under Grant 2021ZD0110202, Na-

tional Natural Science Foundation of China (U20A20226),

and Beijing Natural Science Foundation (4202031).

885

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] 2017. XLA: Optimizing Compiler for TensorFlow. https://www.

tensorflow.org/xla.

[2] 2021. Nvidia TensorRT Documentation. https://docs.nvidia.com/

deeplearning/tensorrt/developer-guide/index.html.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. https://www.tensorflow.org/ Software

available from tensorflow.org.

[4] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern

Architectures: A Dependence-based Approach. Morgan Kaufmann.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del

Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral

Compiler for Expressing Fast and Portable Code. In IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, CGO

2019, Washington, DC, USA, February 16-20, 2019, Mahmut Taylan Kan-

demir, Alexandra Jimborean, and Tipp Moseley (Eds.). IEEE, 193ś205.

https://doi.org/10.1109/CGO.2019.8661197

[6] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill.

2002. Possibly Not Closed Convex Polyhedra and the Parma Polyhedra

Library. In Static Analysis, 9th International Symposium, SAS 2002,

Madrid, Spain, September 17-20, 2002, Proceedings (Lecture Notes in

Computer Science, Vol. 2477), Manuel V. Hermenegildo and Germán

Puebla (Eds.). Springer, 213ś229. https://doi.org/10.1007/3-540-45789-

5_17

[7] AtilimGunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,

and Jeffrey Mark Siskind. 2017. Automatic Differentiation in Machine

Learning: a Survey. J. Mach. Learn. Res. 18 (2017), 153:1ś153:43. http:

//jmlr.org/papers/v18/17-468.html

[8] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Long-

former: The Long-Document Transformer. CoRR abs/2004.05150 (2020).

arXiv:2004.05150 https://arxiv.org/abs/2004.05150

[9] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.

Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1

(2017), 65ś98. https://doi.org/10.1137/141000671

[10] Uday Bondhugula, Albert Hartono, J Ramanujam, and P Sadayappan.

2008. Pluto: A practical and fully automatic polyhedral program opti-

mization system. In Proceedings of the ACM SIGPLAN 2008 Conference

on Programming Language Design and Implementation (PLDI 08), Tuc-

son, AZ (June 2008). Citeseer.

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie

Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.

2015. MXNet: A Flexible and Efficient Machine Learning Library

for Heterogeneous Distributed Systems. CoRR abs/1512.01274 (2015).

arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.

Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep

Learning. CoRR abs/1802.04799 (2018). arXiv:1802.04799 http://arxiv.

org/abs/1802.04799

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.

Training Deep Nets with SublinearMemory Cost. CoRR abs/1604.06174

(2016). arXiv:1604.06174 http://arxiv.org/abs/1604.06174

[14] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry

Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.

2018. Learning to Optimize Tensor Programs. In Advances in Neu-

ral Information Processing Systems 31: Annual Conference on Neu-

ral Information Processing Systems 2018, NeurIPS 2018, December 3-

8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo

Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-

nett (Eds.). 3393ś3404. https://proceedings.neurips.cc/paper/2018/

hash/8b5700012be65c9da25f49408d959ca0-Abstract.html

[15] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:

Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).

http://arxiv.org/abs/1410.0759

[16] cuBLAS 2016. Dense Linear Algebra on GPUs. https://developer.nvidia.

com/cublas.

[17] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling

machine learning programs via high-level tracing. Systems for Machine

Learning (2018).

[18] Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gom-

mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-

lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-

dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Ar-

ray programming with NumPy. Nat. 585 (2020), 357ś362. https:

//doi.org/10.1038/s41586-020-2649-2

[19] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Junxiong Cai, Jiahui

Huang, Tai-Jiang Mu, and Ralph R. Martin. 2021. Subdivision-

Based Mesh Convolution Networks. CoRR abs/2106.02285 (2021).

arXiv:2106.02285 https://arxiv.org/abs/2106.02285

[20] Michael Innes. 2018. Don’t Unroll Adjoint: Differentiating SSA-Form

Programs. CoRR abs/1810.07951 (2018). arXiv:1810.07951 http://arxiv.

org/abs/1810.07951

[21] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Za-

haria, and Alex Aiken. 2019. TASO: optimizing deep learning computa-

tion with automatic generation of graph substitutions. In Proceedings

of the 27th ACM Symposium on Operating Systems Principles. 47ś62.

[22] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. 2019. Soft Rasterizer:

A Differentiable Renderer for Image-Based 3D Reasoning. In 2019

IEEE/CVF International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 7707ś7716.

https://doi.org/10.1109/ICCV.2019.00780

[23] Vincent Loechner. 1999. PolyLib: A library for manipulating parame-

terized polyhedra.

[24] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei

Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020.

Rammer: Enabling Holistic Deep Learning Compiler Optimizations

with rTasks. In 14th USENIX Symposium on Operating Systems Design

and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020.

USENIX Association, 881ś897. https://www.usenix.org/conference/

osdi20/presentation/ma

[25] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. 2015. Auto-

grad: Effortless gradients in numpy. In ICML 2015 AutoML workshop,

Vol. 238. 5.

[26] MKL 2003. Intel(R) oneAPI Math Kernel Library. https://www.intel.

com/content/www/us/en/developer/tools/oneapi/onemkl.html.

[27] William S. Moses and Valentin Churavy. 2020. Instead of Rewrit-

ing Foreign Code for Machine Learning, Automatically Synthesize

Fast Gradients. In Advances in Neural Information Processing Sys-

tems 33: Annual Conference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-

Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

9332c513ef44b682e9347822c2e457ac-Abstract.html

886

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://www.tensorflow.org/
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/3-540-45789-5_17
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html
http://arxiv.org/abs/1410.0759
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/2106.02285
https://arxiv.org/abs/2106.02285
https://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
https://doi.org/10.1109/ICCV.2019.00780
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://proceedings.neurips.cc/paper/2020/hash/9332c513ef44b682e9347822c2e457ac-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9332c513ef44b682e9347822c2e457ac-Abstract.html

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

[28] David A. Padua and Michael Wolfe. 1986. Advanced Compiler Opti-

mizations for Supercomputers. Commun. ACM 29, 12 (1986), 1184ś1201.

https://doi.org/10.1145/7902.7904

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

[30] William Pugh. 1991. The Omega test: a fast and practical integer pro-

gramming algorithm for dependence analysis. In Proceedings Super-

computing ’91, Albuquerque, NM, USA, November 18-22, 1991, Joanne L.

Martin (Ed.). ACM, 4ś13. https://doi.org/10.1145/125826.125848

[31] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

language and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’13, Seattle,

WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan

(Eds.). ACM, 519ś530. https://doi.org/10.1145/2491956.2462176

[32] Michelle Mills Strout, Mary W. Hall, and Catherine Olschanowsky.

2018. The Sparse Polyhedral Framework: Composing Compiler-

Generated Inspector-Executor Code. Proc. IEEE 106, 11 (2018), 1921ś

1934. https://doi.org/10.1109/JPROC.2018.2857721

[33] Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. 2019. Tri-

ton: an intermediate language and compiler for tiled neural net-

work computations. In Proceedings of the 3rd ACM SIGPLAN Inter-

national Workshop on Machine Learning and Programming Languages,

MAPL@PLDI 2019, Phoenix, AZ, USA, June 22, 2019, Tim Mattson,

Abdullah Muzahid, and Armando Solar-Lezama (Eds.). ACM, 10ś19.

https://doi.org/10.1145/3315508.3329973

[34] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru

Ogawa, Shunta Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hi-

royuki Yamazaki Vincent. 2019. Chainer: A Deep Learning Framework

for Accelerating the Research Cycle. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai,

Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George

Karypis (Eds.). ACM, 2002ś2011. https://doi.org/10.1145/3292500.

3330756

[35] Bart van Merrienboer, Olivier Breuleux, Arnaud Bergeron, and

Pascal Lamblin. 2018. Automatic differentiation in ML: Where

we are and where we should be going. In Advances in Neural

Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, December 3-8,

2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo

Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-

nett (Eds.). 8771ś8781. https://proceedings.neurips.cc/paper/2018/

hash/770f8e448d07586afbf77bb59f698587-Abstract.html

[36] Bart van Merriënboer, Alexander B. Wiltschko, and Dan Moldovan.

2017. Tangent: Automatic Differentiation Using Source Code Trans-

formation in Python. CoRR abs/1711.02712 (2017). arXiv:1711.02712

http://arxiv.org/abs/1711.02712

[37] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew

Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-

Agnostic High-Performance Machine Learning Abstractions. CoRR

abs/1802.04730 (2018). arXiv:1802.04730 http://arxiv.org/abs/1802.

04730

[38] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Net-

works. In 6th International Conference on Learning Representations,

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings. OpenReview.net. https://openreview.net/forum?

id=rJXMpikCZ

[39] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral

Model. In Mathematical Software - ICMS 2010, Third International Con-

gress on Mathematical Software, Kobe, Japan, September 13-17, 2010. Pro-

ceedings (Lecture Notes in Computer Science, Vol. 6327), Komei Fukuda,

Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.).

Springer, 299ś302. https://doi.org/10.1007/978-3-642-15582-6_49

[40] Sven Verdoolaege. 2016. Presburger formulas and polyhedral compila-

tion. (2016). https://doi.org/10.13140/RG.2.1.1174.6323

[41] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio

Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral

parallel code generation for CUDA. ACM Trans. Archit. Code Optim. 9,

4 (2013), 54:1ś54:23. https://doi.org/10.1145/2400682.2400713

[42] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang,

Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao

Jia. 2021. PET: Optimizing Tensor Programs with Partially Equiva-

lent Transformations and Automated Corrections. In 15th USENIX

Symposium on Operating Systems Design and Implementation, OSDI

2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.).

USENIX Association, 37ś54. https://www.usenix.org/conference/

osdi21/presentation/wang

[43] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,

Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng

Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.

Smola, and Zheng Zhang. 2019. Deep Graph Library: Towards Efficient

and Scalable Deep Learning on Graphs. CoRR abs/1909.01315 (2019).

arXiv:1909.01315 http://arxiv.org/abs/1909.01315

[44] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-

Performance Tensor Programs for Deep Learning. In 14th USENIX

Symposium on Operating Systems Design and Implementation, OSDI

2020, Virtual Event, November 4-6, 2020. USENIX Association, 863ś879.

https://www.usenix.org/conference/osdi20/presentation/zheng

887

https://doi.org/10.1145/7902.7904
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3292500.3330756
https://doi.org/10.1145/3292500.3330756
https://proceedings.neurips.cc/paper/2018/hash/770f8e448d07586afbf77bb59f698587-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/770f8e448d07586afbf77bb59f698587-Abstract.html
https://arxiv.org/abs/1711.02712
http://arxiv.org/abs/1711.02712
https://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.1.1174.6323
https://doi.org/10.1145/2400682.2400713
https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315
https://www.usenix.org/conference/osdi20/presentation/zheng

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges of FreeTensor

	3 Free-Form DSL
	3.1 Tensors as First-Class Citizens
	3.2 Granularity-Oblivious Tensor Operations
	3.3 Dimension-Free Programming

	4 Generating High Performance Code
	4.1 Partial Evaluation for Dimension-Free Programming
	4.2 Dependence-Aware Transformation
	4.3 Code Generation

	5 Automatic Differentiation
	5.1 Fine-Grained Automatic Differentiation
	5.2 Selective Intermediate Tensor Materialization

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End Performance
	6.3 Analysis of the Speedup
	6.4 Optimization for AD
	6.5 Compiling Time

	7 Related Works
	8 Conclusion
	References

