
PerFlow: A Domain Specific Framework for Automatic
Performance Analysis of Parallel Applications

Yuyang Jin
Tsinghua University

jyy17@mails.tsinghua.edu.cn

Haojie Wang
Tsinghua University

wanghaojie@tsinghua.edu.cn

Runxin Zhong
Tsinghua University

zrx21@mails.tsinghua.edu.cn

Chen Zhang
Tsinghua University

zhang-c21@mails.tsinghua.edu.cn

Jidong Zhai
Tsinghua University

zhaijidong@tsinghua.edu.cn

Abstract

Performance analysis is widely used to identify performance

issues of parallel applications. However, complex commu-

nications and data dependence, as well as the interactions

between different kinds of performance issues make high-

efficiency performance analysis even harder. Although a

large number of performance tools have been designed, accu-

rately pinpointing root causes for such complex performance

issues still needs specific in-depth analysis. To implement

each such analysis, significant human efforts and domain

knowledge are normally required.

To reduce the burden of implementing accurate perfor-

mance analysis, we propose a domain specific programming

framework, named PerFlow. PerFlow abstracts the step-

by-step process of performance analysis as a dataflow graph.

This dataflow graph consists of main performance analysis

sub-tasks, called passes, which can either be provided by

PerFlow’s built-in analysis library, or be implemented by

developers to meet their requirements. Moreover, to achieve

effective analysis, we propose a Program Abstraction Graph

to represent the performance of a program execution and

then leverage various graph algorithms to automate the

analysis. We demonstrate the efficacy of PerFlow by three

case studies of real-world applications with up to 700K lines

of code. Results show that PerFlow significantly eases the

implementation of customized analysis tasks. In addition,

PerFlow is able to perform analysis and locate performance

bugs automatically and effectively.

CCS Concepts: • Software and its engineering → Do-

main specific languages; Software performance; • The-

ory of computation→ Program analysis.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9204-4/22/04.

https://doi.org/10.1145/3503221.3508405

Keywords: Performance Analysis, Domain Specific Frame-

work, Dataflow Graph

1 Introduction

Performance analysis is indispensable for understanding

and optimizing applications and is widely used in different

fields including scientific computing [10, 47, 51, 67], machine

learning [37, 46, 70], and data processing [11, 28]. Due to the

complexity of load imbalance, communication dependence,

resource contention, etc. [18, 36, 50], significant human ef-

forts and knowledge need to be involved in effective analysis

currently. It is challenging to understand the performance

behavior of parallel applications with ease.

A large number of performance tools have been proposed

to facilitate performance analysis based on either profiling

or tracing. Profiling-based tools [8, 59, 62] record program

snapshots at regular intervals, indicating the overall statis-

tical performance data of programs, with very low over-

head. Tracing-based tools [4, 31, 44, 48, 56] record all event

traces during program execution, which contain plentiful

information, including computation, memory access, and

communication characteristics. These tools provide various

performance data, which are the basis of performance anal-

ysis. However, to locate the underlying performance bugs

hidden by complex performance data and communication

dependence, in-depth analysis is further required.

Researchers have proposed many in-depth performance

analysis approaches to locate different kinds of performance

bugs in different scenarios, such as critical path analysis [19,

20, 54], root cause analysis [18, 41], etc. Existing approaches

only focus on a specific aspect of the performance issue

of parallel programs. However, a performance issue for a

complex parallel program may involve multiple factors in-

terleaved in a complex way. (1) Complex communications,

locks, and data dependence unpredictably hide performance

bugs. (2) Different performance bugs interact with each

other, which means that the detected performance bugs may

come from several kinds of performance issues, including

load imbalance, resource contention, etc. Identifying root

causes in a new scenario requires specific in-depth analysis

approaches, and implementing specific approaches normally

177

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503221.3508405&domain=pdf&date_stamp=2022-03-28

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

requires significant human efforts and domain knowledge.

Therefore, we conclude that an easy-to-use framework for

easing the implementation of in-depth performance analysis

is necessary.

Designing a general framework for effective performance

analysis has two key challenges. (1) Providing a unified form

to express different performance analysis tasks is difficult.

To meet the needs of various scenarios, the algorithms of

constraint-solving-based analysis approaches are designed

specifically and differ greatly. We observe that a typical per-

formance analysis approach is a step-by-step process, mean-

ing that each step only performs a basic analysis, and the

results from one step are further processed by the next step.

Inspired by this observation, we come up with the idea of

abstracting performance analysis tasks as a general dataflow

graph. The vertex of the dataflow graph corresponds to

a step, while the data on the edge of the dataflow graph

record intermediate results between steps. (2) Providing a

unified form to represent the performance of a program

is difficult, since analysis approaches rely on significantly

different programs and performance data, including perfor-

mance monitor unit data, program structure, communication

patterns, data dependence, and many more. Many existing

works utilize graphs to represent program behavior and

design task-drivenmethods to solve their problems including

program debugging [12, 22], performance modeling [17],

and communication trace compression [69], etc. [41, 64, 73].

Inspired by these works, we represent the performance of a

program as a graph structure.

In this work, we focus on the domain of performance

analysis, and propose PerFlow, a domain specific framework

to ease the implementation of in-depth performance analysis

tasks. In PerFlow, we abstract the step-by-step process of

performance analysis as a dataflow graph [25], called PerFlow-

Graph, where the analysis steps, called passes, correspond

to vertices, and the intermediate results of each analysis step

correspond to the data on edges. We leverage hybrid static-

dynamic analysis to generate a Program Abstraction Graph

(PAG) as a unified form to represent the performance of a

parallel program, and then implement tasks of analysis steps

with graph operations and algorithms on the generated PAG.

We provide a built-in analysis pass library containing several

basic performance analysis sub-tasks, and low-level APIs to

build user-defined passes. With PerFlow, developers only

need to describe their specific performance analysis tasks as

PerFlowGraphs. PerFlow is able to automatically perform

specific in-depth analysis tasks and report results specified

by developers. In summary, there are four main contributions

in our work.

• We propose PerFlow1, a domain specific framework for

performance analysis. PerFlow provides a dataflow-based

1PerFlow is available at: https://github.com/thu-pacman/PerFlow .

Figure 1. The framework of PerFlow

programming interface for developers to customize spe-

cific performance analysis tasks with ease.

• We present a Program Abstraction Graph, which is a

unified performance representation of parallel programs.

• We provide a performance analysis pass library and some

built-in performance analysis paradigms. Developers can

directly use passes and paradigms to perform analysis.

• We demonstrate the efficacy and efficiency of PerFlow

by three case studies on real-world applications with up to

700K lines of code, leveraging different PerFlow dataflow

graphs to detect performance bugs in different scenarios.

We evaluate PerFlow with both benchmarks and real-

world applications. Experimental results show that PerFlow

can detect scalability bugs, load imbalance, and resource

contention with different PerFlow dataflow graphs more

effectively and efficiently compared with mpiP [62], HPC-

Toolkit [8], and Scalasca [31]. Besides, PerFlow significantly

eases the implementation of the scalability analysis task in

ScalAna [41]. Applications can achieve up to 25.29× perfor-

mance improvements by fixing detected performance bugs.

2 Overview

To help developers deal with the complexities in implement-

ing specific performance analysis tasks, we develop PerFlow,

a domain specific programming framework that screens

developers from all complexities and automatically performs

the process of specific performance analysis. In PerFlow, the

step-by-step process of performance analysis is abstracted

as a dataflow graph, namely PerFlowGraph. Using PerFlow,

developers only need to describe performance analysis tasks

as PerFlowGraphs, and PerFlow will run the program and

perform performance analysis automatically. In this section,

we introduce the PerFlow framework, and give an example

to illustrate how to program with PerFlow.

2.1 PerFlow Framework

The overview of PerFlow is shown in Figure 1, which con-

sists of two components: a graph-based performance abstrac-

tion and a PerFlow programming abstraction.

178

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Graph-based performance abstraction. In this compo-

nent, the performance of a program execution is represented

as a Program Abstraction Graph, whose vertices represent

code snippets and edges represent control flow, data move-

ment, and dependence (Section 3). Taking an executable bi-

nary as input, PerFlow first leverages hybrid static-dynamic

analysis (Section 3.2) to extract program structures and col-

lect performance data. Then performance data are embedded

into the program structure to build a PAG, describing the

performance of a program run (Section 3.3).

PerFlow programming abstraction. This component

abstracts the process of performance analysis as a data-flow

graph. PerFlow programming abstraction consists of two

concepts, performance analysis passes, and dataflow-based

programming model. As the core of programming abstrac-

tion, the performance analysis pass library provides various

built-in passes (Section 4.3.2), which are built with low-

level APIs based on the performance abstraction. The passes

perform graph algorithms, such as breadth-first search, sub-

graphmatching, etc., on the PAGs and complete basic analysis

sub-tasks. Intermediate results, which are the inputs/outputs

of passes, are organized as sets. The elements of a set are PAG

vertices and edges. A pass takes sets as input, updates the

sets, and outputs them. (Note that a PAG is an environment

of all passes in a PerFlowGraph, and a set is a subset of PAG

vertices flowing along the edges of a PerFlowGraph.)

As a programming framework, PerFlow also provides

a dataflow-based API (high-level API), allowing users to

analyze the performance of parallel programs in different

scenarios with ease and high efficiency. Developers only

need to combine passes into PerFlowGraph according to the

demand of their analysis tasks. Then PerFlow will automati-

cally run the programs and perform the specific performance

analysis. PerFlow currently supports MPI, OpenMP, and

Pthreads programs in C, C++, and Fortran. The hybrid static-

dynamic module is easy to extend to other programming

models, such as CUDA, and other architectures, such as ARM.

In our design, the PerFlow is a cross-platform framework.

2.2 Example: A Communication Analysis Task

We take a communication analysis task, as an example to

illustrate how to program with PerFlow. When analyzing

the communication performance of a program execution,

the balance of communications is one of the key points.

If communications are detected with imbalanced behavior,

developers need to break them down to determine whether

the cause of imbalance is different message sizes, the load im-

balance before the communications, or others. We conclude

the step-by-step process of this communication analysis task

as a PerFlowGraph in Figure 2. It reports key attributes

(including function name, communication patterns, debug

info, and execution time) of detected communication calls

with performance bugs. The report module provides both

human-readable texts and visualized graphs. Listing 1 shows

the implementation of the PerFlowGraph with PerFlow’s

high-level Python APIs.

name
comm info
debug info
time

Figure 2. A communication analysis task represented as a

dataflow graph (PerFlowGraph)

1 pflow = PerFlow ()

2 # Run the binary and return a program abstraction graph

3 pag = pflow.run(bin = "./a.out",

4 cmd = "mpirun -np 4 ./a.out")

5

6 # Build a PerFlowGraph

7 V_comm = pflow.filter(pag.V, name = "MPI_*")

8 V_hot = pflow.hotspot_detection(V_comm)

9 V_imb = pflow.imbalance_analysis(V_hot)

10 V_bd = pflow.breakdown_analysis(V_imb)

11 attrs = ["name", "comm -info", "debug -info", "time"]

12 pflow.report(V_imb , V_bd , attrs)

Listing 1. A communication analysis task written using

PerFlow’s Python API

3 Graph-Based Performance Abstraction

A program can be naturally represented as a graph. The code

snippets of programs correspond to the vertices in the graph,

while the relationships between these code snippets, such as

control/data flow and dependence across threads/processes,

correspond to the edges in the graph. The performance data

can be stored as attributes of vertices and edges. In PerFlow,

we use a Program Abstraction Graph to represent the perfor-

mance of a program run. In this section, we first introduce

the definition of PAG, and then describe how to leverage

hybrid static-dynamic analysis to extract PAG structure and

how to embed performance data on a PAG.

3.1 Definition of PAG

A PAG is a (weighted) directed graph 𝐺 = (𝑉 , 𝐸).
Vertex(𝑉). Each vertex 𝑣 ∈ 𝑉 represents a code snippet or a

control structure of a program, whose labels and properties

indicate the types of this vertex and the recorded data on it.

1) The labels of a vertex include function, call, loop, and

instruction. Call vertices are divided into user-defined func-

tion calls, communication function calls, external function

calls, recursive calls, and indirect calls, etc.

2) The properties of a vertex are various performance data,

including execution time, performance monitor unit (PMU)

data, communication data, the number of function calls, and

iteration count, etc., depending on the specific requirement

of analysis tasks and the view of the PAG.

Edge (𝐸). Each edge 𝑒 = (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑒𝑠𝑡) ∈ 𝐸 connects two

vertices 𝑣𝑠𝑟𝑐 and 𝑣𝑑𝑒𝑠𝑡 , whose labels and properties indicate

the types of this edge and the recorded data on this edge.

179

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

1) The labels of an edge include intra-procedural, inter-

procedural, inter-thread, and inter-process. The intra-procedural

edge represents the control flow of functions. The inter-

procedural edge represents function call relationships. The

inter-thread edge represents data dependence across differ-

ent threads, such as waiting events caused by locks. The

inter-process edge represents communications between dif-

ferent processes, including synchronous point-to-point (P2P)

communications, asynchronous P2P communications, and

collective communications.

2) The properties of an edge can be the performance data,

the execution time of communications, the amount of com-

munication data, as well as the time of waiting events, etc.,

depending on the types of edges and runtime data.

3.2 Hybrid Static-Dynamic Analysis

Hybrid static-dynamic analysis is leveraged to collect data for

PAG generation. Static analysis extracts the main structure

of PAG, while the dynamic analysis collects performance

data and the required structure that cannot be obtained stat-

ically, such as indirect calls, locks, and communications, etc.,

by monitoring the program at runtime. Static analysis can

significantly reduce the runtime overhead of pure dynamic

analysis.

Static analysis. PerFlow statically analyzes the binary us-

ing Dyninst [66] to extract the static information, including

the control flow, static call relationship, and debug informa-

tion. The static analysis also marks the function calls whose

information cannot be obtained at the static phase so that

they can be filled in at runtime.

Dynamic analysis. PerFlow provides a built-in runtime

data collection module using sampling-based approaches.

The collection module collects runtime data that cannot be

obtained statically, including the performance monitor unit

(PMU) data, communication data, lock information, indirect

call relationships, etc.

3.3 Performance Data Embedding

Performance data embedding associates performance data

with attributes of the corresponding vertices. We first iden-

tify the corresponding vertex through the calling context of

each piece of data, and then associate the performance data

with these vertices.

Figure 3. Illustration of performance data embedding

In Figure 3, we give an example to illustrate the process of

performance data embedding. Figure 3(a) is a calling context,

and Figure 3(b) shows a PAG. Starting from the main ver-

tex, Loop_1, foo, and pthread_create vertices are detected

with the calling context during the searching process. Finally,

this piece of data is embedded into the pthread_create

vertex.

1 int main() {
2 while (iter --) { // Loop_1
3 foo (...);
4 pthread_mutex_lock (...);
5 sum += local_sum;
6 pthread_mutex_unlock (...);
7 pthread_join (...);
8 }
9 printf (...); }
10 void foo (...){
11 pthread_create (..., add , ...);
12 for (...) sum += B[i]; // Loop_2
13 MPI_Sendrecv(sum , ...); }
14 void* add (...) {
15 pthread_mutex_lock (...);
16 for (...) sum += A[i]; // Loop_3
17 pthread_mutex_unlock (...); }

Listing 2. An MPI+Pthreads program example

3.4 Views of PAG

PerFlow provides two views of PAG: a top-down view and a

parallel view. We take an example for explanation. Listing 2

shows an MPI + Pthreads program example with three func-

tions (main, foo, and add) (Static analysis is performed on

executable binaries, and the example code is only for ease of

understanding.).

Figure 4. Generating the top-down view of PAG. The color

saturation of vertices represents the severity of hotspots.

Only relevant vertices are marked.

Top-down view of PAG. The top-down view of PAG only

contains intra-procedural and inter-procedural edges. Fig-

ure 4(a) shows three PAGs of main, foo, and add generated

through intra-procedural structure extraction. Figure 4(b)

shows a PAG that merges each function’s PAG with inter-

procedural edges (only the related vertex formergingmarked).

Figure 4(c) shows a top-down view of PAG with performance

data in each vertex after performance data embedding (only

the vertex with performance data marked). The color satura-

tion of vertices represents the severity of hotspots.

180

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Parallel view of PAG. The parallel view of PAG contains all

types of edges including intra-procedural, inter-procedural,

inter-thread, and inter-process edges. To build a parallel view

of PAG, (1) we generate a flow for each process and thread.

A flow is the vertex access sequence recorded by pre-order

traversal through a specific part of the top-down view of

PAG. Figure 5(a) shows the generated flows for all threads. (2)

Then we add inter-thread, and inter-process edges, which rep-

resent locks, communications, etc., across flows of different

processes and threads. (3) We further embed performance

data into the PAG. Finally, a parallel view of PAG is formed.

Figure 5(b) shows the generated parallel view of PAG.

Figure 5. Parallel view of PAG. The color saturation of

vertices represents the severity of hotspots. Only relevant

vertices are marked.

4 PerFlow Programming Abstraction

4.1 PerFlowGraph

PerFlow uses a dataflow graph (PerFlowGraph) to represent

all analysis steps and phases in a performance analysis task,

including the running phase, the analysis sub-tasks, and the

result reporting phase, etc. The key observation from existing

performance analysis approaches and our experience is that

the process of performance analysis is similar to a dataflow

graph. Developers analyze profiles and traces step by step

and finally identify performance bugs. Thus we design a

dataflow-based programming abstraction to represent the

process of performance analysis. In the rest of this section,

we introduce the elements in a PerFlowGraph, as well as

performance analysis passes and paradigms.

4.2 PerFlowGraph Element

In a PerFlowGraph, each vertex represents an analysis sub-

task, and each edge represents the input to, or output from, a

vertex.We use a performance analysis pass to complete a sub-

task in a vertex, and use sets as the data flowing along edges.

We introduce the elements of the PerFlowGraph below.

Set. The sets can be sets of PAG vertices V or sets of PAG edges

E, or both (V, E). In PerFlow, we model all code snippets

and program structures as PAG vertices, and all data/control

dependence and data movements as PAG edges (details in

Section 3.1). The contents of sets are updated as they flow

through vertices of PerFlowGraphs.

Pass. A performance analysis pass takes sets as input. After

performing its analysis sub-task, it also outputs sets as the

input of the next pass. As shown in Figure 6, the input

sets flow through a performance analysis pass, and then

output sets are generated and continue flowing. The format

of inputs and outputs is determined by the design of passes.

Developers can flexibly use and combine passes to build the

structure of the PerFlowGraph.

Figure 6. The relationship of sets and performance analysis

passes

PerFlow provides high-level APIs and a built-in pass

library for PerFlowGraph construction. The built-in pass

library provides hotspot detection, differential analysis, crit-

ical path identification, imbalance analysis, and breakdown

analysis, etc. Besides, PerFlow also provides low-level APIs,

which allow developers to write user-defined passes to meet

their requirements. We introduce several built-in passes and

their implementations using low-level APIs in Section 4.3.2.

4.3 Building Performance Analysis Pass

We introduce the design of low-level API and how to build

performance analysis passes with the API below.

4.3.1 Low-level API design. We design three types of

APIs: graph operation APIs, graph algorithm APIs, and set

operation APIs.

Graph operation APIs provide interfaces for developers

to access the attributes of PAG vertex and edge, including

name, type, performance data, and debug information, etc.,

or even to transform the PAG. Here we define the inputs and

outputs of a pass, which uses graph operation API, as I and

O. It may happen that O � I (∃ e ∈ O, but e ∉ I), which means

graph operations can add new elements to the output.

Graph algorithm APIs provide many graph algorithms,

such as breadth-first search, subgraph matching, and com-

munity detection, etc. Developers can use these algorithms

and combine constraints to achieve specific analysis tasks.

Set operation APIs include element sorting, filtering, clas-

sification, as well as computing intersection, union, comple-

ment, and difference of sets. Different from graph operations,

for a pass that only uses set operations, the outputs must be

a subset of the inputs (O ⊆ I). We take the operation filter

as an example. It is designed to deliver specific PAG vertices

and edges to specific passes. The metric of a filter can be

the type, name, and other attributes of vertices and edges. A

filter can distinguish communication vertices by matching

the name attribute with the string MPI_*, and IO vertices

by matching the name with the strings istream::read or

types of vertices.

181

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

4.3.2 Example cases. We further introduce four built-

in performance analysis passes and illustrate how to use

PerFlow’s low-level API to develop passes with graph algo-

rithms on PAG and set operations.

A: Hotspot detection. Hotspot detection refers to identi-

fying the code snippets with the highest value of specific

metrics, such as total execution cycles, cache misses, and

instruction count, etc. The most common hotspot detection

is to identify the most time-consuming code snippets, whose

specific metric is total execution cycles or execution time.

As shown in Listing 3, a hotspot detection pass is built.

1 # Define an "hotspot detection" pass

2 # Input: The vertex set of a PAG - V

3 # Sorting metric - m

4 # The number of returned vertices - n

5 # Output: Hotspot vertex set

6 def hotspot(V, m, n):

7 return V.sort_by(m).top(n)

Listing 3. The implementation of hotspot detection pass

B: Performance differential analysis. Performance dif-

ferential analysis refers to a comparison of program perfor-

mance conducted under the independent variables of input

data, parameters, or different executions. The comparison

helps analysts understand the trend of performance as the

input changes. The performance difference can be intuitively

represented on a top-down view of PAG, and we leverage the

graph difference to perform differential analysis.

The graph difference algorithm is performed on the top-

down view of PAG. As shown in Figure 7, G1 and G2 are

two PAGs with different inputs, and G3 is the graph difference

between G1 and G2. The color saturation of vertices represents

the severity of hotspots. We find that the color saturation

of MPI_Reduce in G1 and G2 is not the highest, but it is the

highest in G3, which means the performance of non-hotspot

vertex MPI_Reduce varies significantly with different in-

puts. Vertices that behave like the MPI_Reduce are identified

with performance issues through performance differential

analysis. Graph difference intuitively shows the changes in

performance between program runs with different inputs.

We implement this pass in Listing 4.

Figure 7. Graph difference on the top-down view of PAGs.

The color saturation of vertices represents the severity of

hotspots.

C:Causal analysis. Performance bugs can propagate through

complex inter-process communications aswell as inter-thread

locks, and lead to many secondary performance bugs, which

makes root cause detection even harder. Paths that consist of

a parallel view of PAG’s edges can well represent correlations

1 # Define a "differential analysis" pass

2 # Input: Vertex sets of two PAGs - V1 , V2

3 # Output: A set of difference vertices

4 def differential_analysis(V1, V2):

5 V_res = []

6 for (v1, v2) in (V1, V2):

7 v = pflow.vertex ()

8 for metric in v1.metrics:

9 v[metric] = v1[metric] - v2[metric]

10 V_res.append(v)

11 return V_res

Listing 4. The implementation of performance differential

analysis pass

across these performance bugs in different processes and

threads. We leverage a graph algorithm, lowest common

ancestor [53] (LCA), and specific restrictions to detect the

correlations and thus achieve the purpose of causal analysis.

The goal of the LCA algorithm is to search the deepest vertex

that has both v and w as descendants in a tree or directed

acyclic graph.

The causal analysis pass is designed based on the LCA

algorithm. Listing 5 shows the implementation of the causal

analysis pass. This pass takes vertices with performance bugs

as inputs, and regards them as descendants. After perform-

ing the LCA algorithm, the detected common ancestors of

descendants are recorded and output as the vertices that

cause performance bugs.

1 # Define a "causal analysis" pass

2 # Input: A set of vertices with performance bugs - V

3 # Output: A set of vertices that cause the bugs

4 def casual_analysis(V)

5 V_res , S = [], [] # S for scanned vertices

6 for (v1, v2) in (V, V):

7 if v1!=v2 and v1 not in S and v2 not in S:

8 # v1 and v2 are regarded as descendants

9 v, path = pflow.lowest_common_ancestor(v1, v2)

10 # v is the detected lowest common ancestor

11 # path is an edge set

12 if v in V:

13 V_res.append(v)

14 return V_res

Listing 5. The implementation of the causal analysis pass

D: Contention detection. Contention refers to a conflict

over a shared resource across processes or threads, which

leads to a negative impact on the performance of processes

or threads competing for the resource. It can cause several

kinds of misbehavior, such as unwanted synchronization or

periodicity, deadlock, livelock, and many more, which need

expensive human efforts to be detected. We observe that mis-

behaviors have specific patterns on the parallel view of PAGs.

Subgraph matching [57], which searches all embeddings of a

subgraph query in a large graph, is leveraged to search these

specific patterns on the PAGs and detect resource contention.

The contention detection pass determines whether re-

source contention exists in the vertices of input sets. The

input of a contention detection pass is a set of vertices

detected by the previous pass, while the outputs are the

detected subgraph embeddings. We define a set of candidate

182

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

subgraphs to represent resource contention patterns. Then

we identify resource contentions by searching the embed-

dings of candidate subgraphs around the vertices of the input

set. Listing 6 shows the implementation of the contention

detection pass.

1 # Define a "contention detection" pass

2 # Input: Vertex set - V

3 # Output: Subgraph embeddings

4 def contention_detection(V):

5 V_res = []

6 # Build a candidate subgraph with contention pattern

7 sub_pag = pflow.graph ()

8 sub_pag.add_vertices ([(1,"A"), (2,"B"), (3,"C"),

9 (4,"D"), (5,"E")])

10 sub_pag.add_edges ([(1 ,3), (2,3), (3,4), (3,5)])

11 # Execute subgraph matching algorithm

12 V_ebd , E_ebd = pflow.subgraph_matching(V.pag , sub_pag)

13 return V_ebd , E_ebd

Listing 6. The implementation of the contention detection

pass

4.4 Performance Analysis Paradigm

A performance analysis paradigm is a specific PerFlowGraph

for an analysis task. We summarize some typical perfor-

mance analysis approaches of existing tools [8, 31, 48, 56,

62] as built-in analysis paradigms, such as an MPI profiler

paradigm (inspired by mpiP [62]), a critical path paradigm

(inspired by the work of Böhme et al. [19] and Schmitt et

al. [54]), and a scalability analysis paradigm (inspired by the

work of Böhme et al. [18] and ScalAna [41]), etc.

(V,E)
V

V V
V

V

V
V

Figure 8. The PerFlowGraph of the scalability analysis

paradigm

We take the scalability analysis paradigm as an example

to show how to implement a performance analysis paradigm.

The scalability analysis task in [41] first detects code snippets

with scaling loss and imbalance, then finds the complex

dependence between the detected code snippets by a back-

tracking algorithm, and finally identifies the root causes

of scaling loss. We decompose the scalability analysis task

into multiple steps. Most of the steps can be completed with

PerFlow’s built-in passes, and we only need to implement

the backtracking step as a user-defined pass.

As shown in Figure 8, we build the PerFlowGraph of

the scalability analysis paradigm, containing three built-in

passes (differential analysis pass, hotspot detection pass, and

imbalance analysis pass), a user-defined pass (backtracking

analysis pass), a union operation, and a report module.

Listing 7 shows the implementation of the scalability anal-

ysis paradigm, which consists of two parts: (1) Writing a

backtracking analysis pass. We first write a backtracking

analysis pass, which is not provided by our built-in pass

1 # Define a "scalability analysis" paradigm

2 # Input: PAGs of two program runs - PAG1 , PAG2

3 def scalability_analysis_paradigm(PAG1 , PAG2):

4

5 # Part 1: Define a "backtracking analysis" pass

6 # Input: A set of vertices with performance bugs - V

7 # Output: Vertices and edges on backtracking paths

8 def backtracking_analysis(V):

9 V_bt , E_bt , S = [], [], [] # S for scanned vertices

10 for v in V:

11 if v not in S:

12 S.append(v)

13 in_es = v.es.select(IN_EDGE)

14 while len(in_es) != 0

15 and v[name] not in pflow.COLL_COMM:

16 if v[type] == pflow.MPI:

17 e = in_es.select(type = pflow.COMM)

18 elif v[type] == pflow.LOOP or

19 v[type] == pflow.BRANCH:

20 e = in_es.select(type = pflow.CTRL_FLOW)

21 else

22 e = in_es.select(type = pflow.DATA_FLOW)

23 V_bt.append(v)

24 E_bt.append(e)

25 v = e.src

26 return V_bt , E_bt

27

28 # Part 2: Build the PerFlowGraph of scalability

analysis paradigm

29 V1, V2 = PAG1.vs, PAG2.vs

30 V_diff = pflow.differential_analysis(V1, V2)

31 V_hot = pflow.hotspot_detection(V_diff)

32 V_imb = pflow.imbalance_analysis(V_diff)

33 V_union = pflow.union(V_hot , V_imb)

34 V_bt , E_bt = backtracking_analysis(V_union)

35 attrs = ["name", "time", "dbg -info", "pmu"]

36 pflow.report ([V_bt , E_bt], attrs)

37

38 # Use the scalability analysis paradigm

39 pag_p4 = pflow.run(bin = "./a.out",

40 cmd = "mpirun -np 4 ./a.out")

41 pag_p64 = pflow.run(bin = "./a.out",

42 cmd = "mpirun -np 64 ./a.out")

43 scalability_analysis_paradigm(pag_p4 , pag_p64)

Listing 7. The implementation of the scalability analysis

paradigm

library. As shown in Listing 7, this pass implements a back-

ward traversal through communications, and control/data

flow with several graph operation APIs, including neighbor

acquisition (v.es at Line 13), edge filter (select at Line

13, 17, 20, and 22), attribute access (v[...] at Line 15-16,

18-19), and source vertex acquisition (e.src at Line 25). (2)

Building the PerFlowGraph of the scalability analysis

paradigm. Then, we build a PerFlowGraph with built-in and

user-defined passes. The differential analysis pass (Line 30)

takes two executions (i.e., a small-scale run and a large-scale

run) as input, and outputs all vertices with their scaling loss.

Then the hotspot analysis pass (Line 31) outputs vertices

with the poorest scalability, while the imbalance analysis

pass (Line 32) outputs imbalanced vertices between different

processes. The union operation (Line 33) merges two sets

(outputs of the hotspot analysis pass and the imbalance

analysis pass) as the input of the backtracking analysis pass

183

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

(Line 34). Finally, the backtracking paths and the root causes

of scalability are stored in (V_bt, E_bt) and reported (Line

36).

4.5 Usage of PerFlow

In summary, there are two main ways for developers to im-

plement specific analysis tasks with PerFlow’s APIs: using

paradigms and building PerFlowGraphs.

Using Paradigms. Developers can directly use built-in

paradigms to obtain related performance analysis reports.

An example that shows how to use a paradigm is given at

Line 38-43 in Listing 7. We run a program with two process

scales of 4 and 64, and directly input them into the scalability

analysis paradigm.

Building PerFlowGraphs. PerFlow provides a built-in

performance analysis pass library for building PerFlowGraphs.

For scenarios where analysis tasks have already been designed,

the example in Listing 7 has shown a complete process of

implementation. For scenarios in which developers do not know

what analysis to apply, PerFlow supports an interactive

mode. It is advisable to first use a general built-in analysis

pass, such as hotspot detection. The output of the previous

pass will provide some insights to help determine or design

the next passes. Then analysts can add other analysis passes

into PerFlowGraph step by step. Finally, PerFlowGraphs are

generated according to detailed analysis.

If built-in passes cannot satisfy the demands, developers

need to write their own passes and combine these user-

defined passes with other built-in passes to build PerFlow-

Graphs. Developers require some basic knowledge to write

user-defined passes. The implementations of several passes

have been introduced (four built-in passes in Section 4.3.2

and the backtracking analysis pass at Line 5-26 in Listing 7).

5 Evaluation

5.1 Experimental Setup

Experimental platforms. We perform the experiments

on two clusters: (1) Gorgon, a cluster with dual Intel Xeon

E5-2670 (v3) and 100 Gbps 4xEDR Infiniband. (2) A national

supercomputer Tianhe-2A. Each node of Tianhe-2A has two

Intel Xeon E5-2692 (v2) processors (24 cores in total) and

64 GB memory. The Tianhe-2A supercomputer uses a cus-

tomized high-speed interconnection network. PerFlow uses

Dyninst (v10.1.0) [66] for static binary analysis, as well as

PMPI wrapper, PAPI library (v5.4.3) [1], and libunwind li-

brary (v1.3.1) for dynamic data collection. The PAG is stored

in a graph processing system igraph [24].

Evaluated programs. We use a variety of parallel programs

to evaluate the efficiency and efficacy of PerFlow, including

BT, CG, EP, FT, IS, LU, MG, and SP, from the widely used

NPB benchmark suite (v3.3) [14], plus several real-world

applications, ZeusMP [35], LAMMPS [13], and Vite [32]. For

NPB programs, problem size CLASS C is used.

Methodology. In our evaluation, we first present both the

static and runtime overhead, as well as the space cost of

the hybrid static-dynamic analysis module (all evaluated

programs run with 128 processes on gorgon.). Then we show

basic features of the top-down view and the parallel view

of PAGs for all evaluated programs (128 processes for the

parallel view). Finally, we use three real-world applications

to demonstrate the process of performing customized per-

formance analysis with PerFlow. In addition, we compare

the results of PerFlow with four state-of-the-art tools, mpiP

(v3.5) [62], HPCToolkit (v2020.12) [8], Scalasca (v2.5) [31],

and ScalAna [41], by studying the performance of ZeusMP.

For HPCToolkit, we set the sampling frequency to 200 Hz,

which is the same as PerFlow. For Scalasca, we first profile

the program and determine where tracing is needed, which

significantly reduces instrumentation overhead.

5.2 Overhead and PAG

Table 1. The overhead of PerFlow

Program BT CG EP FT MG SP LU IS ZMP LMP Vite

Static(Sec.) 0.20 0.06 0.03 0.09 0.12 0.19 0.23 0.04 1.50 5.34 0.73
Dynamic(%) 0.44 3.73 0.13 1.83 0.92 1.08 1.42 0.03 1.56 0.71 0.03
Space(B) 346K 57K 35K 215K 464K 449K 184K28K 2.4M 22M 1.6M

Static analysis. We first evaluate the cost of static analysis

on the executable binaries. As shown in Table 1, the static

analysis only incurs very low overhead (0.03 to 5.34 seconds,

0.77 seconds on average). For a software package with over

700K lines of code, LAMMPS, the static analysis costs only

5.34 seconds.

Dynamic analysis. For all programs, both PMU data and

communication data are collected during dynamic analysis.

The runtime performance overhead of dynamic analysis is

1.11% on average (0.03% to 3.73%), as shown in Table 1. The

variance in dynamic overhead is caused by the different

complexities of communication patterns. CG implements

collective communications with three point-to-point com-

munications, which makes its communication pattern more

complicated. Thus, the runtime overhead of CG is much

higher than that of other programs (3.73%).

Space cost. The space cost of PerFlow is the storage size

of PAGs. Table 1 shows that the space costs for evaluated

programs range from 28 Kilobytes to 22 Megabytes, and 2.5

Megabytes on average. The storage cost for the LAMMPS

package is only 22 Megabytes.

Basic features of PAG. Table 2 shows the code size, the

binary size, as well as the vertex and edge counts of both

the top-down view and the parallel view of generated PAGs

for all evaluated programs. The PAG of the program whose

binary size is larger tends to have more vertices and edges.

5.3 Case Study A: ZeusMP

We use PerFlow and four state-of-the-art tools, mpiP [62],

HPCToolkit [8], Scalasca [31], and ScalAna [41] to study

184

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Table 2. Code size, binary size, and basic features of top-

down view and parallel view of PAG for evaluated programs.

|V| and |E| are the number of vertices and edges respectively.

Program
Code
(KLoc)

Binary
(Bytes)

Top-down view Parallel view

|V| |E| |V| |E|

BT 11.3 490K 3,283 3,282 420,224 462,404
CG 2.0 97K 321 320 41,088 55,176
EP 0.6 60K 111 110 14,208 34,360
FT 2.5 222K 2,904 2,903 371,712 409,128
MG 2.8 270K 4,701 4,700 601,728 712,432
SP 6.3 357K 2,252 2,251 288,256 322,364
LU 7.7 325K 1,566 1,565 200.448 284,780
IS 1.3 37K 325 324 41,600 69,816

ZeusMP 44.1 2.2M 11,981 11,980 1,533,568 2,805,760
LAMMPS 704.8 14.67M 85,230 85,229 10,909,440 16,423,808
Vite 15.9 2.8M 7,118 7,117 970,624 984,866

the performance analysis of ZeusMP. ZeusMP implements a

three-dimensional astrophysical phenomena simulation with

computational fluid dynamics using an MPI programming

model.

We run ZeusMP with a problem size of 256×256×256 for

different numbers of processes ranging from 16 to 2,048 on

the Tianhe-2A supercomputer. Experimental results show

that the speedup of ZeusMP does not scale well on 2,048

processes, which is only 72.57× (16 processes as baseline).

Figure 9. The output vertices of differential analysis pass

on the top-down view of PAG

Performance analysis with PerFlow. We use the scal-

ability analysis paradigm in Figure 8 to analyze the scala-

bility problems. PerFlow first runs ZeusMP with 16 and

2,048 processes. Figure 9 shows the output of the differ-

ential analysis pass. Loop, mpi_waitall_, mpi_allreduce_

vertices are detected with scaling loss. The output of the

imbalance analysis pass is the imbalanced vertices, which are

marked with black boxes in Figure 10. Then the backtracking

analysis pass builds paths between these imbalanced ver-

tices, which represent how the performance bugs propagate

(shown as red bold arrows). Figure 10 shows partial results

due to space limitations. Finally, the imbalanced process

vertices of loop_10.1 in bvald_ and loop_1.1.1 in newdt_

are detected as the underlying reasons for ZeusMP’s poor

scalability.

As shown in Listing 8, the load imbalance of loop_10.1

at bvald.F : 358 causes that some processes of mpi_waitall_

at nudt.F : 227 wait for others. The delays in these processes

cause the waiting events of some processes of mpi_waitall_

at nudt.F : 269 and then propagate to mpi_waitall_ at nudt.F :

328. Finally, the synchronization in mpi_allreduce_ at nudt.F :

Figure 10. Partial results of the backtracking analysis pass

on the parallel view of ZeusMP’s PAG. The vertices with

boxes are the output of the imbalance analysis pass, and red

bold arrows represent the detected edges by the backtracking

analysis pass.

subroutine bvald (rl1 , ru1 , rl2 , ru2 , rl3 , ru3 , d)
357 do k=ks -1,ke+1 ! Loop 10
358 do i=is -1,ie+1 ! Loop 10.1
359 if (abs(nijb(i,k)) .eq. 1) then
360 d(i,js -1,k) = d(i,js ,k)
361 d(i,js -2,k) = d(i,js+1,k)
391 call MPI_IRECV(d(1,je+j+uu ,1), 1, j_slice , n2p ...
399 call MPI_ISEND(d(1,je+j-ll ,1), 1, j_slice , n2p ...

subroutine nudt
207 call bvald (1,0,0,0,0,0,d) ...
227 call MPI_WAITALL (nreq , req , stat , ierr) ...
242 call bvald (0,0,1,0,0,0,d) ...
269 call MPI_WAITALL (nreq , req , stat , ierr) ...
284 call bvald (0,0,0,0,1,0,d) ...
328 call MPI_WAITALL (nreq , req , stat , ierr) ...
361 call MPI_ALLREDUCE(buf_in (1), buf_out (1), 1 ...

Listing 8. ZeusMP code with performance bugs

361 becomes a scaling issue. In conclusion, the load im-

balance propagates through three non-blocking point-to-

point communications and causes the poor scalability of

mpi_allreduce_ and ZeusMP.

Comparison. We run ZeusMP with four state-of-the-art

tools, mpiP, HPCToolkit, Scalasca, and ScalAna on both 16

and 2,048 processes. (1)MpiP generates statistical profiles,

which present communication hotspots and other commu-

nication data, including message size, call count, and debug

information, etc. In the report of mpiP, the mpi_allreduce_

in nudt_ takes 0.06% and 7.93% of the total time on 16 and

2,048 processes, respectively. However, detecting the scal-

ing loss of each communication call still needs significant

human efforts. (2) HPCToolkit provides both fine-grained

loop-level hotspots. In addition to hotspot analysis, HPC-

Toolkit [65] can also detect multiple scalability issues in

185

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

mpi_allreduce_ and mpi_waitall_. But the root cause of

poor scalability and the underlying reasons cannot be easily

obtained without performance analysis skills. (3) Scalasca, a

tracing-based tool, can automatically detect root causes with

event traces. The runtime overhead is 56.72% (not include

I/O) and the storage cost is 57.64 Gigabytes on 128 processes

for function-level event traces with human intervention,

while PerFlow only incurs 1.56% runtime overhead and 2.4

Megabytes storage. (4) Besides, to implement the scalability

analysis task with PerFlow, developers only need to write 27

lines of code with 7 high-level APIs and 5 low-level APIs (as

shown in Listing 7). In contrast, the source code of ScalAna

has thousands of lines.

Optimization. Wefixed the root cause by changing ZeusMP

into a hybrid MPI + OpenMP programming model. OpenMP

#pragma on loop_10.1 at bvald_ allows idle processors to

share the workload of busy processors, which mitigates

the load imbalance between processes. We also perform

this optimization on other detected code snippets with load

imbalance. With these optimizations, the speedup of ZeusMP

increases from 72.57× to 77.71× on 2,048 processes (16 pro-

cesses as baseline). Meanwhile, the performance of ZeusMP

is improved by 6.91% on 2,048 processes.

5.4 Case Study B: LAMMPS

LAMMPS is an open-source software package for large-

scale molecular dynamics simulation. It is implemented with

the hybrid MPI + OpenMP programming model. We run

LAMMPS with 6,912,000 atoms and 2,048 processes (in.cl-

ock.static as an input) on the Tianhe-2A supercomputer.

With simple profiling, we notice that the total communica-

tion time is up to 28.91%. In order to analyze the performance

issue of LAMMPS, we design a PerFlowGraph in Figure 11.

The PerFlowGraph detects imbalanced vertices and performs

causal analysis repeatedly until the output set no longer

changes, and we identify the outputs as the root causes.

Performance analysis with PerFlow. After running the

program, a PAG is generated. Passing through the hotspot

detection pass and the communication filter, MPI_Send and

MPI_Wait are detected as communication hotspotswith 7.70%

and 7.42% of the total time. The imbalance analysis pass

detects that some processes of MPI_Send and MPI_Wait are

imbalanced vertices with longer execution time. As shown

in Figure 12 (We only show a partial parallel view of the

PAG due to space limitations), the top-down vertical axis

represents the data flow, and the horizontal axis represents

different parallel processes. The vertices with boxes are

imbalanced MPI_Send and MPI_Wait calls. The output of the

causal analysis pass indicates that the long execution time

of MPI_Send and MPI_Wait in CommBrick::reverse_comm

(comm_brick.cpp: 544, 547) is caused by loop_1.1 in PairLJ-

Cut::compute (pair_lj_cut.cpp: 102-137). Figure 12 shows

the result of causal analysis. The paths consisting of bold

V(PAG)

Figure 11. PerFlowGraph designed for performance analysis

on LAMMPS

Figure 12. Illustration of the process of PerFlowGraph on

the parallel view of LAMMPS’s PAG

void PairLJCut :: compute (){
for (ii = 0; ii < inum; ii++) { // Loop_1

for (jj = 0; jj < jnum; jj++) {...} // Loop_1 .1
void CommBrick :: reverse_comm (){

for (int iswap = nswap -1; iswap >= 0; iswap --) {
if (size_reverse_recv[iswap]) MPI_Irecv (...);
if (size_reverse_send[iswap]) MPI_Send (...);
if (size_reverse_recv[iswap]) MPI_Wait (...);

Listing 9. LAMMPS code with performance bugs

edges are causal relationships, which shows how perfor-

mance bugs in loop_1.1 propagate to MPI_Send and MPI_Wait.

The cause is that process 0, 1, and 2 run with a longer time

in loop_1.1 than the others.

As shown in Listing 9, each process sends buffers to its

neighbors, and it is implemented with blocking communica-

tions. The blocking communication propagates performance

bugs in process 0, 1, and 2 (loop_1.1) to other processes

(MPI_Send and MPI_Wait).

Optimization. The imbalance in loop_1.1 is the root cause,

and the performance bugs of MPI_Send and MPI_Wait are

secondary bugs, which means that our optimization target is

to make loop_1.1more balance. We add balance commands

into the input file to adjust the size and shape of sub-domains

of processes every 250 steps during simulation. With the

optimization, the performance improves significantly from

118.89 timesteps/s to 134.54 timesteps/s (improved by 13.77%)

on 2,048 processes.

5.5 Case Study C: Vite

Vite implements the distributed memory Louvain method

for graph community detection using the MPI + OpenMP

programming models. We evaluate its performance on a

weighted graph with 600,000 vertices and 11,520,982 edges

with 8 processes and different numbers of threads per process

ranging from 2 to 8 (on gorgon). As shown in Figure 13, the

red dotted line represents the execution time of the original

version of Vite. We observe that Vite has extremely poor

scalability as the number of threads grows. The execution

186

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

time on 8 threads is even longer than that on 2 threads. As

shown in Figure 14, we design a PerFlowGraph, which sets

up different branches for comprehensive diagnosis, to detect

the performance issues of Vite.

2 3 4 5 6 7 8
The number of threads

0.2
0.5
1.0
2.0
4.0
8.0

16.0

Ex
ec

ut
io

n
tim

e
(S

ec
.)

3.33 4.15 5.9

0.34 0.27 0.23

Original
Optimized

Figure 13. Scalability of Vite with 8 processes and different

numbers of threads ranging from 2 to 8

Figure 14. PerFlowGraph designed for performance analysis

on Vite

Performance analysis with PerFlow. PerFlow first

runs Vite with 2 and 8 threads on 8 processes, and two

PAGs are generated. Figure 15(a) shows a partial output of

the hotspot analysis pass. The darker the color of a vertex

is, the longer the execution time of its corresponding code

snippet. We notice that there exist dozens of hotspots, in-

cluding several operations of _Hashtable. The output of

the differential analysis pass is shown in Figure 15(b), from

which we detect that _M_realloc_insert calls in distExe-

cuteLouvainIteration have scalability issues. The report after

the causal analysis presents that the _M_realloc_insert

vertices themselves, and _M_emplace vertices are detected

as the root causes. As shown in Figure 16, the contention

detection pass searches for resource contention around the

detected _M_realloc_insert vertices. The vertical direc-

tion from top to down represents the control/data flow, and

the horizontal direction represents different parallel pro-

cesses and threads. Each vertex stands for a code snippet in

a thread or a process. We hide irrelevant inter-process and

inter-thread edges to simplify the parallel view of PAG for

better representation (The complete parallel view of PAG is

much more complex). Subgraphs in red circles are detected

embeddings of the resource contention pattern in different

processes and code snippets.

In a zoomed-in subgraph, it can be seen that resource con-

tention exists in allocate, reallocate, and deallocate

(called by _M_realloc_insert, and _M_emplace). We find

that the reason for resource contention is that memory allo-

cation operations are thread-unsafe. When a thread allocates

memory, an implicit lock is needed before the operation

is performed. These locks lead to resource contention in

memory allocation vertices, thus causing performance degra-

dation and scalability issues as the number of threads grows.

(a) A partial output of the hotspot detection pass on the top-

down view of PAG. Dozens of vertices are detected as hotspots.

(b) A partial output of the differential analysis pass on the top-

down view of PAG. Only three _M_realloc_insert vertices

are detected.

Figure 15. The output of different passes

Figure 16. A partial output of the contention detection pass

on the parallel view of Vite’s PAG. We hide irrelevant inter-

process and inter-thread edges for better representation.

Optimization. The results indicate that the key of opti-

mization is to reduce the resource contention in allocate,

reallocate, and deallocate. We apply two approaches to

optimize it. (1) First, we use static thread-local variables to

replace default stack variables so that they are initialized only

once, which significantly reduces the number of allocate

and deallocate calls. (2) We change the data structure from

unordered_map to a customized vector-based hashmap for

tiny objects, which allocates memory statically to avoid

frequent memory reallocation. With these optimizations,

the performance and multi-threaded scalability improve sig-

nificantly. As shown in Figure 13, the performance of Vite is

improved by 25.29× for 8 threads, and the speedup increases

from 0.56× to 1.46× for 8 threads (2 threads as baseline).

6 Related Work

Performance tools. Existing tools are either based on pro-

filing or tracing. (1) Profiling-based tools collect performance

data with very low overhead. MpiP [62] is a lightweight pro-

filing library, which provides statistical performance data for

MPI functions. HPCToolkit [8], GProf [33], and VTune [52]

187

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

are all lightweight profilers for general applications and

architectures. Arm MAP [39] and CrayPat [43] are a perfor-

mance analysis tools specially designed for ARM and Cray

X1 platform, respectively. (2) Tracing-based tools collect rich

information for in-depth analysis [15]. Based on Score-P [4],

TAU [5, 56], Vampir [6, 48], and Scalasca [3, 31] provide

visualization for generated trace data and provide direct

insights. Paraver [2, 45, 55] is a trace-based performance

analyzer, which brings great flexibility for data collection

and analysis.

Performance analysis. To satisfy the demands of different

scenarios, researchers have made great efforts in presenting

specific in-depth analysis. Böhme et al. [18] propose an

approach to identify the root cause of imbalance by replaying

event traces forward and backward. To identify the root

cause of bugs, Kairux [71] constructs the longest common

prefix of failure and non-failure execution sequence. Tallent

et al. [60] propose a light-weight detection technique focus-

ing on lock contention. Böhme et al. [19] and Schmitt et

al. [54] detect performance bugs by critical path analysis.

Load imbalance analysis [20, 30, 59], critical path analy-

sis [19, 54], and other approaches [21, 27, 68] have been

proposed to detect performance bugs.

Graph-based analysis. STAT [12] designs a 3D-Trace/Space/

Time Call Graph with stack traces for large-scale program

debugging. CYPRESS [69] and ScalAna [41] generate graphs

with program structure and runtime data for communication

trace compression and scaling loss detection. wPerf [73] uses

a wait-for graph with thread-level waiting events to identify

bottlenecks. Spindle [64] builds a Memory-centric Control

Flow Graph for efficient memory access monitoring. PRO-

GRAML [26] represents programs as directed multigraphs

and leverages deep learning models for further analysis.

Besides, many graph-based analysis approaches are pre-

sented for data processing, such as Canopy [42], Dapper [58],

X-Trace [29], etc. [34]. These works use graphs to detect

information hidden by complex program structures and

dependence on traces and profiles.

Dataflow-based programming. There are many frame-

works that use dataflow [25] as programming abstraction.

TensorFlow [7] uses a dataflow graph to represent machine

learning applications. TVM [23], TensorRT [61], PyTorch [49],

andAnsor [72] use rule-based strategies to transform dataflow

graphs for optimization, while TASO [40] and PET [63]

support automatic optimization strategy selection. Dace [16]

builds stateful dataflow multigraphs as a unified IR for a

pragram. Theano [9] provides a Python framework that

allows users to define mathematical expressions. MapRe-

duce [28] eases data processing with two functions, map and

reduce. The dataflow-based Dryad graph [38] is proposed

for developing large distributed and concurrent applications.

The PerFlowGraph is inspired by the above works.

7 Conclusion

In this paper, we present PerFlow, a domain specific pro-

gramming framework for easing the implementation of in-

depth performance analysis tasks. PerFlowprovides a dataflow-

based programming abstraction, which allows developers to

develop customized performance analysis tasks by describing

the analysis process as a PerFlowGraph with built-in or

user-defined passes. We first propose a Program Abstrac-

tion Graph (PAG) to represent the performance of parallel

programs, and then build passes with graph operations and

algorithms. We also provide some paradigms, which are

the specific combinations of passes, for some general and

common analysis tasks. Besides, PerFlow provides easy-

to-use Python APIs for programming. We evaluate Per-

Flow with both benchmarks and real-world applications.

Experimental results show that PerFlow can effectively ease

the implementation of performance analysis and provide

insightful guidance for optimization.

Acknowledgments

We would like to thank the anonymous reviewers for their

insightful comments. We thank Shengqi Chen, Huanqi Cao,

Liyan Zheng, KezhaoHuang, Shiyu Fan, and XiaopingHuang

for their valuable feedback and suggestions. This work is

supported by National Key R&D Program of China under

Grant 2021YFB0300300, National Natural Science Foundation

of China (U20A20226), Beijing Natural Science Foundation

(4202031). Jidong Zhai is the corresponding author of this

paper (Email: zhaijidong@tsinghua.edu.cn).

References
[1] 2021. PAPI tools. http://icl.utk.edu/papi/software/

[2] 2021. Paraver homepage. Barcelona Supercomputing Center. http:

//www.bsc.es/paraver

[3] 2021. Scalasca homepage. Julich Supercomputing Centre and German

Research School for Simulation Sciences. http://www.scalasca.org

[4] 2021. Score-P homepage. Score-P Consortium. http://www.score-p.org

[5] 2021. TAU homepage. University of Oregon. http://tau.uoregon.edu

[6] 2021. Vampir homepage. Technical University Dresden. http://www.

vampir.eu

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine

learning. In 12th USENIX symposium on operating systems design and

implementation (OSDI’16). 265–283.

[8] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,

Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. 2010.

HPCToolkit: Tools for performance analysis of optimized parallel

programs. Concurrency and Computation: Practice and Experience

22, 6 (2010), 685–701.

[9] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Anger-

mueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin

Bayer, Anatoly Belikov, Alexander Belopolsky, et al. 2016. Theano: A

Python framework for fast computation of mathematical expressions.

arXiv e-prints (2016), arXiv–1605.

[10] Yulong Ao, Chao Yang, Xinliang Wang, Wei Xue, Haohuan Fu, Fang-

fang Liu, Lin Gan, Ping Xu, and Wenjing Ma. 2017. 26 pflops stencil

188

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

computations for atmospheric modeling on sunway taihulight. In

2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS’17). IEEE, 535–544.

[11] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,

Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark.

In Proceedings of the 2015 ACM SIGMOD international conference on

management of data. 1383–1394.

[12] Dorian C Arnold, Dong H Ahn, Bronis R De Supinski, Gregory L Lee,

Barton P Miller, and Martin Schulz. 2007. Stack trace analysis for large

scale debugging. In 2007 IEEE International Parallel and Distributed

Processing Symposium (IPDPS’07). IEEE, 1–10.

[13] Large-scale Atomic and Molecular Massively Parallel Simulator. 2013.

Lammps. available at: http:/lammps. sandia. gov (2013).

[14] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo, and M.

Yarrow. 1995. The NAS Parallel Benchmarks 2.0. NAS Systems Division,

NASA Ames Research Center, Moffett Field, CA.

[15] Daniel Becker, Felix Wolf, Wolfgang Frings, Markus Geimer, Brian JN

Wylie, and Bernd Mohr. 2007. Automatic trace-based performance

analysis of metacomputing applications. In 2007 IEEE International

Parallel and Distributed Processing Symposium (IPDPS’07). IEEE, 1–10.

[16] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo

Schneider, and Torsten Hoefler. 2019. Stateful dataflow multigraphs:

A data-centric model for performance portability on heterogeneous

architectures. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’19). 1–

14.

[17] Arnamoy Bhattacharyya and Torsten Hoefler. 2014. Pemogen: Au-

tomatic adaptive performance modeling during program runtime. In

Proceedings of the 23rd international conference on Parallel architectures

and compilation (PACT’14). 393–404.

[18] David Bohme, Markus Geimer, Felix Wolf, and Lukas Arnold. 2010.

Identifying the root causes of wait states in large-scale parallel

applications. In 2010 39th International Conference on Parallel Processing

(ICPP’10). IEEE, 90–100.

[19] David Böhme, Felix Wolf, Bronis R de Supinski, Martin Schulz, and

Markus Geimer. 2012. Scalable critical-path based performance

analysis. In 2012 IEEE 26th International Parallel and Distributed

Processing Symposium (IPDPS’12). IEEE, 1330–1340.

[20] D. Bohme, F. Wolf, and M. Geimer. 2012. Characterizing Load

and Communication Imbalance in Large-Scale Parallel Applications.

In 2012 IEEE 26th International Parallel and Distributed Processing

Symposium Workshops PhD Forum (IPDPSW’12). 2538–2541.

[21] Nader Boushehrinejadmoradi, Adarsh Yoga, and Santosh Nagarakatte.

2018. A parallelism profiler with what-if analyses for openmp

programs. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’18).

IEEE, 198–211.

[22] Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R de

Supinski, Dong H Ahn, and Martin Schulz. 2010. AutomaDeD:

Automata-based debugging for dissimilar parallel tasks. In 2010

IEEE/IFIP International Conference on Dependable Systems & Networks

(DSN’10). IEEE, 231–240.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler

for deep learning. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’18). 578–594.

[24] Gabor Csardi, Tamas Nepusz, et al. 2006. The igraph software package

for complex network research. (2006).

[25] David E Culler. 1986. Dataflow architectures. Annual review of

computer science 1, 1 (1986), 225–253.

[26] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler,

and Hugh Leather. 2020. Programl: Graph-based deep learning for

program optimization and analysis. arXiv preprint arXiv:2003.10536

(2020).

[27] Charlie Curtsinger and Emery D Berger. 2015. Coz: Finding code that

counts with causal profiling. In Proceedings of the 25th Symposium on

Operating Systems Principles (SOSP’15). 184–197.

[28] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data

processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[29] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker.

2007. X-trace: A pervasive network tracing framework. In 4th USENIX

Symposium on Networked Systems Design & Implementation (NSDI’07).

[30] T. Gamblin, B.R. de Supinski, M. Schulz, R. Fowler, and D.A. Reed. 2008.

Scalable load-balance measurement for SPMD codes. In Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’08). 1–12.

[31] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika Ábrahám, Daniel

Becker, and Bernd Mohr. 2010. The Scalasca performance toolset

architecture. Concurrency and Computation: Practice and Experience

22, 6 (2010), 702–719.

[32] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth

Kalyanaraman, Hao Lu, Daniel Chavarria-Miranda, Arif Khan, and

Assefaw Gebremedhin. 2018. Distributed louvain algorithm for

graph community detection. In 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS’18). IEEE, 885–895.

[33] Susan L Graham, Peter B Kessler, and Marshall K McKusick. 1982.

Gprof: A call graph execution profiler. ACM Sigplan Notices 17, 6

(1982), 120–126.

[34] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chao-

qiang Deng, Changshu Liu, and Lidong Zhou. 2011. G2: a graph

processing system for diagnosing distributed systems. In Proceedings

of the 2011 USENIX Conference on Annual Technical Conference (USENIX

ATC’11). 27–27.

[35] John C Hayes, Michael L Norman, Robert A Fiedler, James O Bordner,

Pak Shing Li, Stephen E Clark, Mordecai-Mark Mac Low, et al. 2006.

Simulating radiating and magnetized flows in multiple dimensions

with ZEUS-MP. The Astrophysical Journal Supplement Series 165, 1

(2006), 188.

[36] Mert Hidayetoğlu, Tekin Biçer, Simon Garcia De Gonzalo, Bin Ren,

Doğa Gürsoy, Rajkumar Kettimuthu, Ian T Foster, and Wen-mei W

Hwu. 2019. Memxct: Memory-centric x-ray ct reconstruction with

massive parallelization. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis

(SC’19). 1–56.

[37] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng

Shen. 2021. Understanding and bridging the gaps in current GNN

performance optimizations. In Proceedings of the 26th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’21). 119–132.

[38] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. 2007. Dryad: distributed data-parallel programs from sequen-

tial building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007. 59–72.

[39] Christopher January, Jonathan Byrd, Xavier Oró, and Mark O’Connor.

2015. Allinea MAP: Adding Energy and OpenMP Profiling Without

Increasing Overhead. In Tools for High Performance Computing 2014.

Springer, 25–35.

[40] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei

Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning

computation with automatic generation of graph substitutions. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles

(SOSP’19). 47–62.

[41] Yuyang Jin, Haojie Wang, Teng Yu, Xiongchao Tang, Torsten Hoefler,

Xu Liu, and Jidong Zhai. 2020. ScalAna: automating scaling loss

detection with graph analysis. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

189

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuyang Jin, Haojie Wang, Runxin Zhong, Chen Zhang, and Jidong Zhai

Analysis (SC’20). 1–14.

[42] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor

Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,

Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance

tracing and analysis system. In Proceedings of the 26th Symposium on

Operating Systems Principles (SOSP’17). 34–50.

[43] Steve Kaufmann and Bill Homer. 2003. Craypat-cray x1 performance

analysis tool. Cray User Group (May 2003) (2003).

[44] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,

Matthias Lieber, Holger Mickler, Matthias S Müller, and Wolfgang E

Nagel. 2008. The vampir performance analysis tool-set. In Tools for

high performance computing. Springer, 139–155.

[45] Jesús Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, and Luis

Gregoris. 1996. DiP: A parallel program development environment. In

European Conference on Parallel Processing. Springer, 665–674.

[46] Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, and Wei-

keng Liao. 2017. Parallel deep convolutional neural network training

by exploiting the overlapping of computation and communication. In

2017 IEEE 24th International Conference on High Performance Computing

(HiPC’17). IEEE, 183–192.

[47] Paulius Micikevicius. 2009. 3D finite difference computation on GPUs

using CUDA. In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units. 79–84.

[48] Wolfgang E Nagel, Alfred Arnold, Michael Weber, Hans-Christian

Hoppe, and Karl Solchenbach. 1996. VAMPIR: Visualization and

analysis of MPI resources. (1996).

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,

high-performance deep learning library. Advances in Neural Informa-

tion Processing Systems (NeurIPS’19) 32 (2019), 8026–8037.

[50] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The

Case of the Missing Supercomputer Performance: Achieving Optimal

Performance on the 8,192 Processors of ASCI Q. In Proceedings of the

2003 ACM/IEEE Conference on Supercomputing (SC’03). ACM.

[51] Kiran Ravikumar, David Appelhans, and PK Yeung. 2019. GPU accel-

eration of extreme scale pseudo-spectral simulations of turbulence

using asynchronism. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC’19).

1–22.

[52] James Reinders. 2005. VTune performance analyzer essentials. Intel

Press (2005).

[53] Baruch Schieber and Uzi Vishkin. 1988. On finding lowest common

ancestors: Simplification and parallelization. SIAM J. Comput. 17, 6

(1988), 1253–1262.

[54] Felix Schmitt, Robert Dietrich, and Guido Juckeland. 2017. Scalable

critical-path analysis and optimization guidance for hybrid MPI-CUDA

applications. The International Journal of High Performance Computing

Applications 31, 6 (2017), 485–498.

[55] Harald Servat, Germán Llort, Judit Giménez, and Jesús Labarta.

2009. Detailed performance analysis using coarse grain sampling.

In European Conference on Parallel Processing. Springer, 185–198.

[56] Sameer S Shende and Allen D Malony. 2006. The TAU parallel

performance system. The International Journal of High Performance

Computing Applications 20, 2 (2006), 287–311.

[57] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020. GraphPi: high

performance graph pattern matching through effective redundancy

elimination. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’20).

IEEE, 1–14.

[58] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephen-

son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.

2010. Dapper, a large-scale distributed systems tracing infrastructure.

(2010).

[59] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey.

2010. Scalable Identification of Load Imbalance in Parallel Executions

Using Call Path Profiles. In Proceedings of the 2010 ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (SC’10). Washington, DC, USA, 1–11.

[60] Nathan R Tallent, John M Mellor-Crummey, and Allan Porterfield.

2010. Analyzing lock contention in multithreaded applications. In

Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP’10). 269–280.

[61] NVIDIA TensorRT. 2019. Programmable inference accelerator. Re-

trieved August 1 (2019).

[62] Jeffrey Vetter and Chris Chambreau. 2005. mpip: Lightweight, scalable

mpi profiling. (2005).

[63] HaojieWang, Jidong Zhai, Mingyu Gao, ZixuanMa, Shizhi Tang, Liyan

Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia.

2021. PET: Optimizing Tensor Programs with Partially Equivalent

Transformations and Automated Corrections. In 15th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’21).

37–54.

[64] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen Yu, Xiaosong

Ma, and Wenguang Chen. 2018. Spindle: informed memory access

monitoring. In Proceedings of the 2018 USENIX Conference on Annual

Technical Conference (USENIX ATC’18). 561–574.

[65] Lai Wei and John Mellor-Crummey. 2020. Using sample-based time

series data for automated diagnosis of scalability losses in parallel

programs. In Proceedings of the 25th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP’20). 144–159.

[66] William R Williams, Xiaozhu Meng, Benjamin Welton, and Barton P

Miller. 2016. Dyninst and MRNet: Foundational infrastructure for

parallel tools. In Tools for High Performance Computing 2015. Springer,

1–16.

[67] Hisashi Yashiro, Masaaki Terai, Ryuji Yoshida, Shin-ichi Iga, Kazuo

Minami, and Hirofumi Tomita. 2016. Performance analysis and opti-

mization of nonhydrostatic icosahedral atmospheric model (NICAM)

on the K computer and TSUBAME2. 5. In Proceedings of the Platform

for Advanced Scientific Computing Conference. 1–8.

[68] Tingting Yu and Michael Pradel. 2016. Syncprof: Detecting, localizing,

and optimizing synchronization bottlenecks. In Proceedings of the 25th

International Symposium on Software Testing and Analysis. 389–400.

[69] Jidong Zhai, Jianfei Hu, Xiongchao Tang, XiaosongMa, andWenguang

Chen. 2014. Cypress: combining static and dynamic analysis for

top-down communication trace compression. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC’14). IEEE, 143–153.

[70] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan

Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017.

Poseidon: An efficient communication architecture for distributed deep

learning on GPU clusters. In Proceedings of the 2017 USENIX conference

on Annual Technical Conference (USENIX ATC’17). 181–193.

[71] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding

Yuan. 2019. The inflection point hypothesis: a principled debugging

approach for locating the root cause of a failure. In Proceedings of

the 27th ACM Symposium on Operating Systems Principles (SOSP’19).

131–146.

[72] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

et al. 2020. Ansor: Generating high-performance tensor programs

for deep learning. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’20). 863–879.

[73] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang. 2018. wPerf:

generic Off-CPU analysis to identify bottleneck waiting events. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’18). 527–543.

190

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

A Artifact Evaluation Instruction

A.1 Access

Scripts of experiments in this paper are available at https:

//github.com/thu-pacman/PerFlow.

A.2 Prerequisites

PerFlow is dependent on:

• Dyninst: https://github.com/dyninst/dyninst

• Boost: Boost will be installed automaticallywith Dyninst.

• PAPI: https://bitbucket.org/icl/papi/src/master/

• igraph: https://github.com/igraph/igraph

• cmake: version >= 3.16

Dyninst and PAPI need to be pre-installed. igraph has been

integrated into PerFlow as submodule. Use the following

command to download igraph.

git submodule update --init

There are two ways to build PerFlow. One is to build

dependencies with source files and specify their directories

when building PerFlow, the other is to use spack to build

these dependencies.

A.2.1 Building dependencies with source files. After

building dependencies, use the following command to install

PerFlow.

cmake .. -DBOOST_ROOT =/

path_to_your_boost_install_dir -DDyninst_DIR =/

path_to_your_dyninst_install_dir/lib/cmake/

Dyninst -DPAPI_PREFIX =/

path_to_your_papi_install_dir

Make sure that there exists `DyninstConfig.
cmake ` in /path_to_your_dyninst_install_dir/

lib/cmake/Dyninst ,

and there exist `include ` and `lib` in /

path_to_your_papi_install_dir and /

path_to_your_boost_install_dir.

Note that if Dyninst is built with source files, the Boost

will be downloaded and installed automatically in the install

directory of Dyninst.

A.2.2 Building dependencies with spack. The recom-

mended way to build Dyninst (with Boost) and PAPI is to

use spack (https://github.com/spack/spack). First use the

following commands to install and load dependencies.

spack install dyninst # boost will be installed

at the same time

spack install papi

spack load dyninst # boost will be loaded at

the same time

spack load papi

Then use the following command to build PerFlow.

mkdir build && cd build && cmake ..

A.3 Using PerFlow

PerFlow provides built-in analysis passes and paradigms,

as well as low-level APIs for developers. An MPI profiler

paradigm and a critical path detection task are used to show

how to use PerFlow.

A.3.1 MPI profiler. The MPI profiler paradigm is a built-

in analysis paradigm. For evaluation, it is performed on an

MPI program NPB-CG (CLASS=B and 8 processes).

Use the following command to perform the MPI profiler

paradigm.

cd build/example/AE/model_validation

python3 ./ model_validation.py # python3

A.3.2 Critical path detection. To implement the criti-

cal path detection task, a user-defined pass is written with

PerFlow’s low-level APIs. For evaluation, this task is per-

formed on a multi-threaded micro-benchmark (a PTthreads

program).

Use the following command to perform the critical path

detection task.

cd build/example/AE/pass_validation

python3 ./ pass_validation.py # python3

191

